Ancestral Interactions of Ribosomal RNA and Ribosomal Proteins

Kathryn A. Lanier, 1 Poorna Roy, 1 Dana M. Schneider, 1 and Loren Dean Williams 1,* 1 School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia

ABSTRACT We have proposed that the ancient ribosome increased in size during early evolution by addition of small folding-competent RNAs. In this Accretion Model, small RNAs and peptides were subsumed onto subunit surfaces, gradually encasing and freezing previously acquired components. The model predicts that appropriate rRNA fragments have inherited local autonomy of folding and local autonomy of assembly with ribosomal proteins (rProteins), and that the rProtein and rRNA are co-chaperones. To test these predictions, we investigate the rRNA interactions of rProtein uL23 and its tail, uL23tail, which is a β-hairpin that penetrates deep into the core of the large ribosomal subunit. In the assembled ribosome, uL23tail associates with Domain III of the rRNA and a subdomain called “DIIIcore”. Here using band shift assays, fluorescence Job plots, and yeast three-hybrid assays, we investigate the interactions of rProtein uL23 and its tail with Domain III and with DIIIcore rRNA. We observe rRNA-uL23tail complexes in the absence of Mg2+ ions and rRNA-uL23tail (n > 1) complexes in the presence of Mg2+ ions. By contrast, the intact uL23 rProtein binds in slightly anticooperative complexes of various stoichiometries. The globular and tail regions of rProtein uL23 are distinctive in their folding behaviors and the ion dependences of their association with rRNA. For the globular region of the rProtein, folding is independent of rRNA, and rRNA association is predominantly by nonelectrostatic mechanisms. For the tail region of the protein, folding requires rRNA, and association is predominantly by electrostatic mechanisms. We believe these protein capabilities could have roots in ancient evolution and could be mechanistically important in co-chaperoning the assembly of the ribosome.

INTRODUCTION

The ribosome is responsible for synthesis of all coded proteins in all organisms. Ribosomal RNAs (rRNAs) catalyze decoding and peptidyl transfer (1–3), whereas ribosomal proteins (rProteins) stabilize and rigidify rRNAs. The cores of ribosomal particles are penetrated by rProtein tails (rTails) that extend inward from globular domains residing on subunit surfaces. rTails contain elongated and idiosyncratic polypeptide conformations and isolated secondary structural elements. The ribosome surface is a patchwork of rRNA and globular proteins.

It is remarkable, considering its size, complexity, asymmetry, and molecular precision that assembly of the bacterial ribosome is highly robust and flexible and can occur by a variety of parallel pathways (4). Transcription and folding of rRNA, translation and folding of rProteins, and rRNA-rProtein assembly occur in concert (5). The small ribosomal subunit contains 21 rProteins and the 16S rRNA, whereas the large ribosomal subunit (LSU) contains 33 rProteins and the 23S and 5S rRNAs.

We have recently proposed the Accretion Model of ribosomal evolution (6–8), in which the ancestral ribosome grew by recursive accumulation of oligomers of peptide and RNA onto subunit surfaces, encasing and freezing previously acquired components. The addition of new fragments onto subunit surfaces left the previous core unperturbed. During accretion, the folding of short rRNAs and polypeptides into secondary and tertiary structures were emergent phenomena, dependent on rRNA-rPeptide interactions (8,9).

The Accretion Model makes specific predictions about the folding and co-assembly of rRNA and rProteins. The model predicts that rRNA and rProtein segments have inherited chaperone functions in which small rRNA segments catalyze rProtein folding and rProteins catalyze rRNA assembly. These chaperone functions require both native and non-native interactions between rProtein and rRNA during folding and assembly, in funnel-like processes.

To investigate predictions of the Accretion Model, we characterize interactions of intact rProtein Ul23 or its isolated rTail with rRNA partners as indicated by the assembled ribosome. We determine that the rProtein associates with rRNA via a subtle balance of native and non-native interactions.
We have previously shown that isolated rRNA domains and subdomains fold to native-like structures (10,11).

Here we investigate isolated rRNA Domain III, its subdomain (DIIIcore), rProtein uL23, and its rTail (uL23tail). In the native ribosome, uL23tail penetrates the LSU, and interacts with DIIIcore (Fig. 1). We cleaved uL23tail from the globular domain of rProtein uL23, and experimentally assayed binding of intact rProtein uL23 and isolated uL23tail with Domain III and DIIIcore in vitro and in vivo. We have investigated in vitro binding with fluorescence and band shift assays and in vivo binding with the yeast three-hybrid assay. We parsed the molecular interactions between the rRNA and the rProtein, and between the rRNA and the rTail, and qualitatively determined effects of electrostatic contributions of the interactions.

MATERIALS AND METHODS

Geometric analysis of molecular interactions

rRNA-rPeptide interactions were characterized by inspection of the three-dimensional structure of the *Thermus thermophilus* 70S ribosome (PDB: 1VY4) (12) and from FR3D (13). Coordinates of Domain III rRNA were extracted from the intact ribosomal structure. rRNA-rProtein interaction geometries were obtained directly from the crystal structure; rRNA within 3.4 Å of any atom of uL23 was defined as “contacted”. Coulombic interactions were defined at a cutoff distance of 5.5 Å between a NH\textsubscript{3}+ of an amino acid side chain (14).

Continuos variation

The uL23tail, comprising amino acids His58–Ala79 with addition of Trp80 (HVRGKKKLGRYLGKPRDKKAW, the 11-cationic amino acids are bold), was purchased from RS Synthesis (Louisville, KY). We added a tryptophan to the C-terminus of uL23tail, where a tryptophan is observed in uL23 of *Escherichia coli*. Maintaining a constant total concentration of rRNA and uL23tail, the mole fraction of uL23tail to rRNA was varied. The concentration of uL23tail was evaluated after peptide hydrolysis (16). uL23tail was hydrolyzed in 6 M HCl at 150 °C for 6 h in Pierce Vacuum Hydrolysis Tubes (Rockford, IL). After hydrolysis, the sample was concentrated by removing the hydrochloric acid with a stream of argon.

Hydrolysis Tubes (Rockford, IL). After hydrolysis, the sample was concentrated by removing the hydrochloric acid with a stream of argon.

The absorbance of tryptophan in the hydrolyzed sample was measured at 278 nm.

The rRNA and uL23tail were suspended in 10 mM Tris-HCl, pH 8.3, heated to 85 °C for 30 s, then cooled to 30 °C at a rate of 1.5 °C/min. Fluorescence emission of Trp80 was monitored at 350 nm using a BioTek Synergy H4 Multi-Mode Plate Reader (Winooski, VT). The fluorescence of Trp80 is quenched by association with Domain III or DIIIcore rRNA.

FIGURE 1 Domain III rRNA and rProtein uL23 as observed in the native ribosome. (a) DIIIcore (magenta) interacts with protein uL23 (green). The remainder of Domain III is gray. (b) uL23tail (green) forms a β-hairpin that traverses the surface of DIIIcore. (c) Shown here is a cartoon representation of the β-hairpin structure of uL23tail. Hydrogen bonds are shown as dashed lines. (d) Shown here is the secondary structure of the LSU rRNA highlighting Domain III (gray box) and DIIIcore (magenta line). (e) The rRNA wraps around uL23tail, forming a pocket that is complementary to the folded peptide. The anionic phosphate oxygens of the rRNA are red. Cationic nitrogens of uL23tail are blue. Coordinates are from the *T. thermophilus* ribosomal structure (PDB: 1VY4; (12)). To see this figure in color, go online.
Molecular interactions of DIIIcore with rProtein uL23

Using the three-dimensional structure, we parsed the molecular interactions (Coulombic, cation-π and hydrogen bonding) that link DIIIcore rRNA to rProtein uL23 in the native structure of the LSU. As noted previously (20), rProtein uL23 interacts Coulombically with DIIIcore, positively charged functional groups of several lysines are in close proximity to negatively charged phosphate groups of the rRNA (Fig. 1 e). These electrostatic interactions are observed for K16-U1340 (NZ-O1P: 2.7 Å), K40-A1596 (NZ-O1P: 5.0 Å), K40-A1597 (NZ-O2P: 3.9 Å), K62-U1312 (NZ-O2P: 3.3 Å), and K77-U1340 (NZ-O1P: 3.7 Å). Hydrogen bonds are observed between K16 and U1340 (2.7 Å) and between K77 and U1341 (2.8 Å). Two cation-π interactions (defined by a cutoff distance of 6.0 Å and a cutoff angle of 60°) (14,21,22) are observed between cationic amino acids of rProtein uL23 and the aromatic systems of bases in DIIIcore, K16 interacts with A1393 (5.7 Å) and K77 interacts with U1341 (3.3 Å). The structure indicates that when uL23tail is folded into a β-hairpin, cationic amino acid side chains of uL23tail and anionic phosphate groups of the rRNA form complementary arrays.

The amino acids of rProtein uL23 that interact with DIIIcore rRNA in the intact ribosome are highly conserved over phylogeny. Alignments of uL23 sequences from a subset of 121 organisms in a sparse representation of the three domains of life (7) reveal five cationic amino acids K16, K40, K62, K77, and K78 that are highly conserved (present in >90% of the sequences sampled, Supporting Material). All conserved amino acids of rProtein uL23 interact exclusively with DIIIcore rRNA.

rRNA-rProtein and rRNA-rPeptide stoichiometry

Continuous variation suggests uL23tail forms near 1:1 complexes with Domain III and with DIIIcore

We characterized stoichiometries of the interaction of uL23tail with Domain III and with DIIIcore in vitro in the absence and presence of Mg2+ using a spectroscopic assay and the method of continuous variation (23,24). A series of solutions with varying ratios of uL23tail to rRNA were prepared with a constant total volume. To enable detection of rRNA-rPeptide interaction by fluorescence, we added a tryptophan to the C-terminus of uL23tail. A tryptophan is present at this position in the E. coli rProtein uL23, but not in the T. thermophiles uL23.

We inferred stoichiometries of binding from the discontinuities in plots of fluorescence intensity versus mole fraction of uL23tail and rRNA. The results suggest that in the absence of Mg2+, uL23tail predominantly forms complexes with an average near 1:1 stoichiometry (rRNA1·uL23tail). This behavior is observed with both Domain III and with DIIIcore (Fig. 2, a and b). A complex with 1:1 stoichiometry would give a discontinuity at mole fraction 0.5. Discontinuities are observed at mole fraction 0.55 for Domain III and 0.54 for DIIIcore. Upon the addition of 10 mM Mg2+, the discontinuity shifts to the right (towards a greater ratio of uL23tail to rRNA; Fig. 2, c and d). In the presence of Mg2+, discontinuities are observed at mole fraction 0.71 for Domain III and 0.62 for DIIIcore. This direction of shift in the discontinuity away from mole fraction 0.5 is reproducible, suggesting increased formation of rRNA1·uL23tail
complexes with $n > 1$. The data are most consistent with a model in which ul23 tail forms rRNA1-ul23 tail n complexes with $n > 1$ with both Domain III and with DIII core in the presence of Mg$^{2+}$. The close similarities in the Job plots for ul23 tail with both Domain III and with DIII core suggest that ul23 tail interacts primarily with the DIII core region of Domain III and not with regions of Domain III outside of DIII core. Control experiments with Tetrahymena thermophila Group I intron P4–P6 RNA are consistent with less-specific binding with ul23 tail, and are without a clear inflection point (Fig. S2).

Electrophoretic mobility shift assay confirms binding of ul23 tail with Domain III and with DIII core in vitro

Two-color electrophoretic mobility shift assays (EMSAs) (17) were used to evaluate binding affinities and stoichiometries of rProtein ul23 or ul23 tail with Domain III or DIII core. In the two-color EMSAs, free RNA appears as a green band on the gel and free protein as a red band. RNA-protein complexes produce a colocalized yellow band (Figs. 3 and 4). MBP was fused to the N-terminal of ul23 tail and intact rProtein ul23 to induce changes in mobility of the rRNA upon complex formation. Control experiments in which Domain III and DIII core rRNAs were incubated with MBP lacking the ul23 or ul23 tail fusion demonstrate that MBP does not form complexes with Domain III or DIII core rRNAs.

Binding reactions were performed in both the absence (Fig. 3, a and b) and presence of Mg$^{2+}$ (Fig. 3, c and d). In both types of experiments, Domain III and DIII core associate with ul23 tail as indicated by changes in mobility and red and green colocalization, giving a yellow band (Fig. 3).

The mobilities of the rRNA-ul23 tail complexes decrease continuously with increasing peptide concentration. This observation is consistent with dynamical phenomena, in which the rPeptide dissociates/associates from the rRNA during electrophoresis (25). By mass action, higher concentration of rPeptide would push the rRNA towards the fully associated state. Stoichiometries of ul23 tail and rRNA in these EMSA experiments would be difficult to infer because of averaging and dynamics during the experiment.

Relative dissociation constants (K_d values) were crudely estimated by fitting the EMSA data to a simple binding model, assuming a stoichiometry of 1:1. Concentrations of various species in the binding reaction between ul23 tail and Domain III or DIII core were obtained by integrating the band intensities on the EMSA gels. The apparent K_d for ul23 tail in association with Domain III is estimated to be 2.8 μM in the absence Mg$^{2+}$ and 4.4 μM in the presence

FIGURE 2 Continuous variation of fluorescence intensity versus mole fraction (X) of ul23 tail and Domain III or DIII core rRNAs. (a) and (b) represent binding in the absence of divalent cations, whereas (c) and (d) represent binding in the presence of 10 mM Mg$^{2+}$. In the absence of Mg$^{2+}$ the best-fit lines intersect at ul23 tail mole fraction (a) $x = 0.55$ for Domain III and (b) at $x = 0.54$ for DIII core, each suggesting 1:1 stoichiometry of interaction of ul23 tail with Domain III or DIII core rRNAs. (c) In the presence of Mg$^{2+}$, the best-fit lines intersect at $x = 0.71$ for Domain III and (d) at $x = 0.62$ for DIII core. The fluorescence emission was monitored at 350 nm.
of Mg$^{2+}$. The apparent K_d for uL23tail in association with DIIIcore is estimated to be 3.0 μM in the absence of Mg$^{2+}$ and 5.3 μM in the presence of Mg$^{2+}$. For both of these complexes, the affinity of the rPeptide for the rRNA appears to be attenuated by Mg$^{2+}$, suggesting that electrostatic interactions are a significant component of the binding interactions. Polyelectrolyte theory predicts this decrease in affinity with increasing salt concentration (26).

EMSA suggests rProtein uL23 forms noncooperative non-stoichiometric complexes with Domain III and with DIIIcore in vitro

Similar to uL23tail, full-length rProtein uL23 forms complexes with Domain III and with DIIIcore, as indicated by shifts on the EMSA gels. In contrast to uL23tail, rProtein uL23 associates with Domain III and with DIIIcore to give distinct ladders (Fig. 4). In the simplest interpretation, this banding pattern indicates formation of multiple RP\textsubscript{n} complexes ($R = rRNA$, $P = rProtein$, and $n = number of rProtein molecules bound per rRNA molecule) (25). The ladder shifts to lower mobility species as the rProtein concentration increases as expected by mass action. The regions of the gels showing the lowest mobility species provide information on the maximum number of rProtein molecules bound per rRNA molecule. Domain III binds over seven uL23 rProteins, whereas DIIIcore binds a maximum of nine. The differential stoichiometry of interaction between Domain III and DIIIcore suggests rProtein uL23 binds to regions of Domain III outside of DIIIcore.

To determine affinities and degree of cooperativity, the EMSA data were quantitated and fit to binding models. Concentrations were estimated by integrating the band intensities on the gels. K_d values were estimated by fitting for each RP\textsubscript{n} complex (where $n = 1, 2, 3, 4$; Table 1). For complexes with $n > 4$, errors in integrated intensities were too great to be useful for this purpose. A model in which four K_d values were constrained to a single value gave a significantly worse fit than a model with four different K_d values. The single K_d model gave larger error residuals (Figs. S3–S6). In the best fits, $K_{d4} > K_{d3} > K_{d2} > K_{d1}$. The fits suggest that binding is anticooperative, indicating that the affinity of the first rProtein for the rRNA is greater than that of the second rProtein, which is greater than that of the third, which is greater than that of the fourth. Neither addition of Mg$^{2+}$ nor the conversion of Domain III to DIIIcore changes the ranking of the K_d values.
The affinities of rProtein uL23 are uniformly greater for Domain III than for DIIIcore. This difference is not altered by addition of Mg2+. In contrast to observations with uL23\textsubscript{tail}, Mg2+ increases the affinity of rProtein uL23 for the rRNA, for each RP\textsubscript{n} complex. Therefore, for a given concentration of rRNA and rProtein, the addition of Mg2+ shifts the equilibrium condition to complexes of greater rProtein to rRNA ratio, consistent with observations in the Job plots. Because polyelectrolyte theory predicts the opposite (decreasing affinity with increasing salt concentration), it appears that nonelectrostatic interactions are important in the stabilization of these complexes.

TABLE 1 Dissociation Constants (K\textsubscript{d} values) for Each Binding Site

<table>
<thead>
<tr>
<th>Binding Site</th>
<th>K\textsubscript{d1} (µM)</th>
<th>K\textsubscript{d2} (µM)</th>
<th>K\textsubscript{d3} (µM)</th>
<th>K\textsubscript{d4} (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIII-uL23</td>
<td>0.5</td>
<td>0.9</td>
<td>1.2</td>
<td>1.6</td>
</tr>
<tr>
<td>DIIIcore-uL23</td>
<td>1.4</td>
<td>2.1</td>
<td>2.9</td>
<td>3.5</td>
</tr>
<tr>
<td>DIII-uL23, 5 mM Mg2+</td>
<td>0.4</td>
<td>0.8</td>
<td>1.0</td>
<td>1.3</td>
</tr>
<tr>
<td>DIIIcore-uL23, 5 mM Mg2+</td>
<td>0.6</td>
<td>1.1</td>
<td>1.8</td>
<td>2.3</td>
</tr>
</tbody>
</table>

K\textsubscript{d1} is the dissociation constant for the first binding site (RP\textsubscript{1}), K\textsubscript{d2} is the dissociation constant for the second binding site (RP\textsubscript{2}), K\textsubscript{d3} is the dissociation constant for the third binding site (RP\textsubscript{3}), and K\textsubscript{d4} is the dissociation constant for the fourth binding site (RP\textsubscript{4}).

Domain III and DIIIcore interact and associate with uL23 in vivo

We used the yeast three-hybrid system (18,27,28) to confirm interaction of Domain III and DIIIcore with rProtein uL23 in vivo. In this system, association of bait RNA with prey protein in yeast increases expression of reporter gene HIS3, causing resistance to 3-AT (28). 3-AT is a competitive inhibitor of the HIS3 gene product. Cells can survive only when the level of HIS3 gene product is sufficient to overcome the inhibitory effect of a given level of 3-AT. Expression of the reporter gene produces sufficient histidine to allow cell survival. The level of 3-AT that confers lethality is a measure of the level of expression of HIS3 and is therefore a measure of the strength of interaction between the bait RNA and the prey protein.

In the yeast three-hybrid assay, both Domain III and DIIIcore are seen to interact with rProtein uL23 (Fig. 5). In vivo interaction of each rRNA with rProtein uL23 resulted in similar expression of reporter gene HIS3, as determined by resistance to 0.4 mM 3-AT. Although expression is less than that observed for the positive control (p50 RNA/p53 protein), it is well above that observed for the negative control (MS2 RNA/rProtein uL23 GAD) over a range of 3-AT concentrations. No expression was observed for the other negative
controls (RNA-hybrid with GAD, RNA-hybrid alone, and protein-hybrid alone).

DISCUSSION

The nature of the folding and assembly processes of the bacterial ribosome (4,5), including the robustness and flexibility, is consistent with an evolutionary model in which folding of rProtein and folding of rRNA were coemergent during development of the ribosome (8,9). In this model, folding of rRNA was emergent on interactions with polypeptide and folding of polypeptide was emergent on interactions with rRNA. This model predicts that rProtein and rRNA are co-chaperones. Their folding and assembly should be robust and flexible.

rProtein uL23 is located near the exit tunnel of the ribosome where it interacts with the trigger factor protein. The globular domain of this rProtein is on the surface of the LSU (29) and the extended segment that we call uL23tail (Fig. 1) penetrates into the LSU. uL23tail forms a β-hairpin that traverses the surface of DIIIcore and penetrates well into the particle. For isolated uL23 in solution, the globular domain folds to the native state whereas the tail remains in random coil (30). Circular dichroism data show that in the absence of rRNA, uL23tail is also in a random coil state (K.A.L. and L.D.W., unpublished data) as expected. Therefore, formation of a native-like complex of either uL23tail or uL23 with DIIIcore or Domain III would require folding to the β-hairpin observed in the assembled ribosome. Folding of uL23tail to a β-hairpin allows specific geometric pairing of an array of cationic side chains of uL23tail with negatively charged phosphate groups of the rRNA.

Intrinsic co-chaperone functions of rRNA and rProteins might require non-native interactions of folding and assembly intermediates. Here we determine whether uL23tail or rProtein uL23 might bind to rRNA by non-native modes. We observe in EMSAs that isolated DIIIcore and Domain III rRNAs associate with intact rProtein uL23. rProtein uL23 forms a series of well-resolved complexes with DIIIcore and Domain III rRNAs, as can be seen on the EMSA gels. Intact uL23 associates with DIIIcore and regions of Domain III outside of DIIIcore. Association is also confirmed by yeast three-hybrid experiments, which do not provide information on stoichiometry or binding sites. However, the combined data suggest that rProtein uL23 forms non-native assemblies with rRNA. A variety of complexes appear to vary by stoichiometry (rRNA1-uL23n, n = 1, 2, 3, ...) and are slightly anticooperative; each rProtein binds to a given rRNA fragment with less affinity than the previous rProtein. The affinities of rProtein uL23 for DIIIcore and Domain III increase with increasing Mg2+ concentration. This ion dependence suggests that the predominant interactions between rProtein uL23 and the rRNA are nonelectrostatic in nature. Shorter range and more subtle interactions, such as hydrogen bonds, ion-dipole or dipole-dipole, must be important for these assemblies.

In contrast to rProtein uL23, the apparent affinities of uL23tail for DIIIcore and Domain III decrease with increasing Mg2+ concentration. In the absence of Mg2+ ions uL23tail appears to form a 1:1 complex with Domain III and with DIIIcore (rRNA1-uL23tail1). Our structural analysis suggests that specific electrostatic interactions between rRNA phosphates and uL23tail cationic amino acids drive folding of uL23tail to a β-hairpin. Upon the addition of Mg2+ ions, the complexes switch from rRNA1-uL23tail1 to rRNA1-uL23tailn stoichiometry (with n > 1). Formation of these complexes is indicated in the Job plots (Fig. 2). A change in binding mode is expected because Mg2+ would screen the electrostatic interactions and destabilize binding by the β-hairpin conformation of uL23tail.

This ion dependence suggests that the predominant interactions between the β-hairpin form of uL23tail and the rRNA are electrostatic in nature, consistent with our structural analysis. Complexes of rRNA1-uL23tailn (n > 1) cannot be excluded by EMSA because kinetic phenomena smear the gels.

In sum, the globular and tail regions of rProtein uL23 are distinctive in their folding behaviors and in the role of electrostatics in their interactions with rRNA. For the globular region of uL23, folding is independent of rRNA, and
association with rRNA is predominantly by nonelectrostatic mechanisms. For uL23tail, folding requires rRNA, and association with the rRNA is predominantly by electrostatic mechanisms. We believe protein folding capabilities could have roots in ancient evolution and could be mechanistically important in co-chaperoning the assembly of the ribosome.

It appears that uL23tail is more ancient than the globular domain of uL23 (8). Their highly distinctive interactions with the rRNA are consistent with this model. It appears that in the intact rProtein, the binding preferences of uL23tail are overwhelmed by contributions from the globular domain of uL23. The effects of Mg2+ on uL23tail affinity and stoichiometry are obscured by the globular domain. In general, it can be said that the interactions of this rProtein with rRNA are complex and heteromorphous.

We previously constructed a 615-nucleotide biochemical model of the ancestral LSU rRNA derived from the 2787-nucleotide 23S rRNA of \textit{T. thermophilus}, and showed that this rRNA folds and assembles with appropriate rPeptides (31). We also showed that the 367-nucleotide Domain III and the 199-nucleotide DIII\textsubscript{core} fold autonomously to near-native states (10,11) when excised from the LSU.

Summary

We have proposed a model of ancient evolution of the ribosome, which selected for robustness in folding and assembly, and independence of small isolated components (7). Here, we isolate small rRNA and rProtein fragments, and assay them for folding and assembly. We have observed that rRNA fragments fold independently, and in this case the rRNA assembles with an ancient rProtein fragment. We observe ancestry-specific modes of interaction between the rProtein and the rRNA. It appears that rProteins are chimeras; the noncanonical tails are more ancient than the globular domains.

SUPPORTING MATERIAL

Supporting Materials and Methods, six figures, five tables, and one data file are available at http://www.biophysj.org/biophysj/supplemental/S0006-3495(17)30395-8.

AUTHOR CONTRIBUTIONS

K.A.L. performed experiments, contributed to experimental design, analyzed data, and collaborated with L.D.W. in writing the manuscript. L.D.W. contributed to experimental design and analyzed data. P.R. and D.M.S. performed experiments and analyzed data.

ACKNOWLEDGMENTS

We thank Marvin P. Wickens (University of Wisconsin-Madison) for providing us with the pACTII plasmid and James Maher for the providing us with the RNA hybrid p50-MS2 and protein hybrid GAD-p53 vectors. This work was supported by NASA grant No. NNX16AJ29G.

REFERENCES

