

1) [12] The line on the graph above is obtained by adding waves. Give the wavelength, amplitude, and phase at x=0 of each wave.

2) [20] This peptide contains a glycine and a proline. For the backbone atoms of these two residues:

- a) Indicate the orbital hybidization,
- a) Indicate the geometry,
- a) Mark hydrogen bond donors with a D,
- d) Mark hydrogen bond acceptors with an A.

3) [18] Define the variables/parameters in the equations below.

 $f = 6\pi\eta R_s$

f: frictional coefficient η : viscosity R_s : Stokes radius for a sphere

D = RT/Nf

D: Diffusional coefficient R: gas constant T: temperature N: Avogadro's number f: frictional coefficient

 $s = v/\omega^2 r$

s: sedimentation coefficientv: angular velocityr: distance from rotor spindle

$$\frac{i_{\theta}}{I_0} = \frac{2\pi^2 n_o^2 \left(\frac{dn}{dC}\right)^2}{r^2 \lambda^4 N} CM(1 + \cos^2 \theta)$$

 i_{θ} : intensity of scattered light at angle θ

 I_{θ} : intensity of scattered light at angle 0

 n_o : index of refraction of solvent

n: index or refraction of solution

 $\frac{dn}{dC}$: specific refractive index increment, i.e., the change in index of refraction with concentration

r : distance

N:Avogadro's number

 λ : wavelength of light

C: concentration

M: molecular weight

 θ : scattering angle

4) [4] Why is the ski blue? Because of the equation for $\frac{i_{\theta}}{I_0}$ above. Scattering is wavelength dependent, blue light (small λ) is scattered more effectively than other colors.

5) [10] Assume brick 1 is at temperature T_1 and brick 2 is at temperature T_2 , and that the two bricks can exchange heat and only heat with each other and are otherwise isolated, and that $T_1(initial) > T_2(initial)$. S_1 is the entropy of brick 1 and S_2 is the entropy of brick 2.

- a) What is the relationship between $T_1(\text{final})$ and $T_2(\text{final})$? $T_1(\text{final}) = T_2(\text{final})$?
- b) What is the relationship between $S_1(initial)$ and $S_1(final)$? Brick 1 cools and so looses entropy: $S_1(initial) > S_1(final)$
- c) What is the relationship between $S_2(initial)$ and $S_2(final)$? Brick 1 heats and so gains entropy: $S_2(initial) < S_2(final)$
- d) What is the relationship between $[S_1(initial) + S_2(initial)]$ and $[S_1(final) + S_2(final)]$?

For any spontaneous process the total entropy (of the universe) increases: $[S_1(initial) + S_2(initial)] < [S_1(final) + S_2(final)]$

6) [15] The optimum distance for interaction between two atoms is 0.40 nm. The favorable energy of the interaction is 25 kJ/mol at that distance. Assuming a Lennard-Jones 6-12 potential:

a) Estimate the repulsive and dispersive parameters (A & B). Use $25 = \frac{A}{r^{12}} - \frac{B}{r^6}$ and $0 = \frac{-12A}{r^{13}} + \frac{6B}{r^7}$

b) Will the energy be more unfavorable 0.35 or at 0.45 nm?

3.5 nm is more unfavorable, because repulsive term has a greater dependence (12^{th} power) on distance than the attractive term (6^{th} power).

7) [15] Estimate the entropy of folding of a six residue peptide to a native state (assume the native state is restricted to a single conformational state).

Use $S = k \ln \omega$, were $\omega = 1$ for folded peptide and $\omega = 3^n$ for the random coil (n=# of residues).

8) [6] Sketch a right-handed double helix.