Biophysical Chemistry 6582

Exam 1
February 4, 2004
I will not cheat today, signed \qquad print name: KEY

1) [12] The line on the graph above is obtained by adding waves. Give the wavelength, amplitude, and phase at $x=0$ of each wave.

2) [20] This peptide contains a glycine and a proline. For the backbone atoms of these two residues:
a) Indicate the orbital hybidization,
a) Indicate the geometry,
a) Mark hydrogen bond donors with a D,
d) Mark hydrogen bond acceptors with an A.
3) [18] Define the variables/parameters in the equations below.
$f=6 \pi \eta R_{s}$
f : frictional coefficient
η : viscosity
R_{s} : Stokes radius for a sphere
$D=R T / N f$
D: Diffusional coefficient
R : gas constant
T: temperature
N : Avogadro's number
f : frictional coefficient
$s=v / \omega^{2} r$
s : sedimentation coefficient
v : angular velocity
r : distance from rotor spindle
$\frac{i_{\theta}}{I_{0}}=\frac{2 \pi^{2} n_{o}^{2}\left(\frac{d n}{d C}\right)^{2}}{r^{2} \lambda^{4} \mathrm{~N}} C M\left(1+\cos ^{2} \theta\right)$
i_{θ} : intensity of scattered light at angle θ
I_{θ} : intensity of scattered light at angle 0
n_{o} : index of refraction of solvent
n : index or refraction of solution
$\frac{d n}{d C}$: specific refractive index increment, i.e., the change in index of refraction with concentration
r : distance
N :Avogadro's number
λ : wavelength of light
C : concentration
M : molecular weight
θ : scattering angle
4) [4] Why is the ski blue? Because of the equation for $\frac{i_{\theta}}{I_{0}}$ above. Scattering is wavelength dependent, blue light (small λ) is scattered more effectively than other colors.
5) [10] Assume brick 1 is at temperature T_{1} and brick 2 is at temperature T_{2}, and that the two bricks can exchange heat and only heat with each other and are otherwise isolated, and that T_{1} (initial) $>T_{2}$ (initial). S_{1} is the entropy of brick 1 and S_{2} is the entropy of brick 2.
a) What is the relationship between T_{1} (final) and T_{2} (final)?

$$
\mathrm{T}_{1}(\text { final })=\mathrm{T}_{2}(\text { final }) ?
$$

b) What is the relationship between S_{1} (initial) and S_{1} (final)?

Brick 1 cools and so looses entropy: S_{1} (initial) $>S_{1}$ (final)
c) What is the relationship between S_{2} (initial) and S_{2} (final)?

Brick 1 heats and so gains entropy: S_{2} (initial) $<\mathrm{S}_{2}$ (final)
d) What is the relationship between $\left[\mathrm{S}_{1}\right.$ (initial)+ S_{2} (initial)] and $\left[\mathrm{S}_{1}\right.$ (final)+ S_{2} (final)]?

For any spontaneous process the total entropy (of the universe) increases: $\left[\mathrm{S}_{1}(\right.$ initial $)+\mathrm{S}_{2}($ initial $\left.)\right]<\left[\mathrm{S}_{1}(\right.$ final $)+\mathrm{S}_{2}($ final $\left.)\right]$
6) [15] The optimum distance for interaction between two atoms is 0.40 nm . The favorable energy of the interaction is $25 \mathrm{~kJ} / \mathrm{mol}$ at that distance. Assuming a LennardJones 6-12 potential:
a) Estimate the repulsive and dispersive parameters (A \& B).

Use $25=\frac{A}{r^{12}}-\frac{B}{r^{6}}$
and

$$
0=\frac{-12 A}{r^{13}}+\frac{6 B}{r^{7}}
$$

b) Will the energy be more unfavorable 0.35 or at 0.45 nm ?
3.5 nm is more unfavorable, because repulsive term has a greater dependence ($12^{\text {th }}$ power) on distance than the attractive term ($6^{\text {th }}$ power).
7) [15] Estimate the entropy of folding of a six residue peptide to a native state (assume the native state is restricted to a single conformational state).

Use $S=k \ln \omega$, were $\omega=1$ for folded peptide and $\omega=3^{\mathrm{n}}$ for the random coil ($\mathrm{n}=\#$ of residues).
8) [6] Sketch a right-handed double helix.

