

Uploaded PDB file as $1 \mathrm{ct9}$.pdb

Duke Biochemistry
Duke University School of Medicin
PREBITY
Your file from http://www.pdb.org/ was uploaded as $1 \mathrm{ct} 9 . \mathrm{pdb}$

- This compound is identified as CRYSTAL STRUCTURE OF ASPARAGINE SYNTHETASE B FROM ESCHERICH

This structure was solved by X-RAY DIFFRACTION
This structure was solved at $2.00 \AA$ resolution
4 chain(s) is/are present [3 unique chain(s)]
A total of 1982 residues are present.
Protein mainchain and sidechains are present.
No explicit hydrogen atoms are included
1074 hetero group(s) is/are present.

- $\mathrm{R}=0.197$. Rfree $=0.297$

Romer 3 atoms were found. Proceeding assuming PDBv3 formatted fil

Continue >

Analyze all-atom contacts and geometry

Duke University School of Medicine

Select a model to work with:

- 1ct9.pdb Original file downloaded from web

Choose the outputs you want:
Default options have been selected based on the content of the submitted file.
Follow the ${ }^{\text {as }}$ symbols for more information on the validation options.

Duke Biochemistry Duke University School of Medicine

Select a model to work with:

Choose the outputs you want:
Default options have been selected based on the content of the submitted file. Follow the ${ }^{1 / 5}$ symbols for more information on the validation options.

$\square_{\text {3-D kinemage graphics }}$

\checkmark Charts, plots, and tables Universal
\square Geometry evaluation
Protein

- Ramachandran olots ${ }^{\text {P3 }}$
\checkmark Rotamer evaluation ?
$\square C \beta$ deviations ${ }^{\text {® }}$
\square Cis-Peptide evaluation?
Snow cis-nonlro and twisted peptide statistics even if the model has none
< uncheck these \square CaBLAM backbone evaluation

RNA

RNA sugar pucker analysis
RNA backbone conformations

Other options

Horizontal chart with real-space correlation data
\square Chart for use with Coot (may take a long time, but should take less than 1 hour)
\square Create html version of multi-chart
\qquad
\square Remove residue rows with ' ' altloc when other alternate(s) present

Analyze all-atom contacts and geometry

Duke Biochemistry
Duke University School of Medicine

Select a model to work with:

- 1ct9.pdb Original file downloaded from web

Choose the outputs you want:
Default options have been selected based on the content of the submitted file.
Follow the symbols for more information on the validation options.
3-D kinemage graphics
Charts, plots, and table
Universal
\square Clashes \& clashscore for
\square Geometry evaluation?
Protein
∇ Ramachandran plots ${ }^{\text {P }}$
Rotamer evaluation ?
$\square \mathrm{C} \beta$ deviations ${ }^{\text {? }}$
\square Cis-Peptide evaluation
\square CaBLAM backbone evaluation ?
RNA
\square RNA sugar pucker analysis
\square RNA backbone conformations

Other options

Horizontal chart with real-space correlation data
\square Chart for use with Coot (may take a long time, but should take less than 1 hour)
Suggest / report on automatic structure fix-up
Create html version of multi-chart
Run programs to perform these analyses > \quad Cancel

Analysis output: geometry for 1ct9.pdb

Summary statistics

Protein Geometry	Ramachandran outliers	15	0.77\%	Goal: <0.05\%
	Ramachandran favored	1831	93.80\%	Goal: >98\%
	Rama distribution Z-score	-2.76 ± 0.17		Goal: abs(Z score) < 2

Key to table colors and cutofis here: ?

Multi-criterion visualizations

View (968 bytes)

Single-criterion visualizations

- Ramachandran plot PDF (1.8 Mb): View
 in KiNG | View in NGL | Download

- Ramachandran plot PDF (1.8 Mb): View

Continue >

MoIProbity Ramachandran analysis

93.8% ($1831 / 1952$) of all residues were in favored (98%) regioes.
99.2% ($1937 / 1952$) of all residues were in allowed (>99.8\%) regions.
There were 15 outliers (pai, psi):
A 138 Asp $(-46.8,168.7)$

- 505 Pro $(-56.4,16.1)$

A 505 Pro $(-56.4,16.1)$
B 248 Lys ($-54.1,-74.0$)
275 Po $(-3262,105$.
275 Pro $(-382,105.1)$
278 Pro (-79.5, -46.4)
B 428 Glu $(-19.5,-91.5)$

http://kinemage.biochem.duke.edu
Lovell, Davis, et al. Proteins 50:437 (2003)

