CHEM 2312, Summer 2017-Study Abroad in Lyon, France
ORGANIC CHEMISTRY – II

INSTRUCTOR
Dr. Cameron Tyson
Email: cam.tyson@chemistry.gatech.edu
Ph: 404-385-0418

Dr. Pamela Pollet
Email: cam.tyson@chemistry.gatech.edu
Ph: 404-385-4484

Course Website:
Please check the course t-square site for lecture notes, homework assignments, practice exams, announcements, etc.

TEXTBOOKS

OPTIONAL SOFTWARE
WileyPlus (https://www.wileyplus.com/WileyCDA) - online textbook and tutorials are available.

SCHEDULE
The course will include twelve 3.0 hour lecture periods, a field trip to the High Field NMR Centre and local chemical company, 2 midterm exams, and a final exam.

POLICIES, PROCEDURES AND GRADES

GRADES
Exams 1&2 Mol.Structure, Conjugation, Aromaticity and Reactions of Arenes 200 points
Exam 3&4 Aldehydes/Ketones and Acyl Derivatives, Amines 200 points
Homework 100 points
Final Exam Part 1: Exam 5 100 points
Final Exam Part 2: ACS Final Exam 200 points

The lowest score (i.e 100 points) from exams 1,2,3,4,5 or HW will be dropped. Thus, the course will be graded on the basis of 700 points:
88% (616 points) will guarantee an “A”
75% (525 points) guarantees a “B”
65% (455 points) guarantees a “C”
55% (385 points) guarantees a “D”

LECTURE ATTENDANCE
You are strongly encouraged to attend lectures.

REGRADERS
If you want any work regraded you must make a request and return the assignment within 2 days to the instructor. Work will not be regraded after this deadline.

CLASS NOTES
Notes for each topic should be downloaded from the web (as PDF files) and printed prior to the first lecture dealing with the material. Topics correspond fairly closely to the chapters, with a little reorganization. These notes are not designed to be comprehensive. In fact, they are specifically designed to be incomplete. They are designed to serve as the basis for lecture notes, not as a replacement for attending lectures. The notes should minimize the use of lecture time for information transfer, and allow time to work problems in class.

HOMEWORK (100 points)
Homework will be assigned. Late assignments will not be accepted.

OTHER PROBLEMS (not graded)
You should work the problems in each reading assignment as you get to them. Problems at the end of the chapter are listed on the class notes (top right hand corner): You should work through as many of these as possible. These will serve as a guide for the types of questions to appear on examinations. Do not submit answers to these problems, they will not be graded.

EXAMS: SCHEDULE, MAKE-UPS AND DROPS
You must take the exam at the assigned lecture time. Make-ups can only be given if advance notification is given or upon presentation of a doctor's note. Exams not made-up, for any reason, will receive a score of zero.

Since this course is offered as part of a study abroad program, dropping the course is not permitted. In addition, Institute policies regarding Final Instructional Class Days and Reading Periods are not applicable. Be sure to review the academic course schedule for this 8-week study abroad program.

MATERIAL COVERED/STUDENT RESPONSIBILITIES
You are responsible for all material presented in lectures and in assigned readings. You are also responsible for announcements made in class, which will also be posted on the www page or distributed by email. You must check the web site and your mail.gatech.edu account on a regular basis. Note: There are potential problems associated with automatic forwarding of messages from GT email to other email addresses; check your email account even if you have it set up to forward email elsewhere.

WORKING IN GROUPS
Most learning takes place outside of the classroom. Although lectures should put things in perspective, working through the textbook, and solving the problems is when you will come to terms with the material. I encourage you to work together on these reading and problem assignments. For most students, it is actually unwise to try to work alone. Although you might study in groups, remember that you are ultimately responsible for your learning. Everybody can benefit from team work. If you are struggling with the material you stand to learn a lot; if you are an “Organic Whiz” you also stand to learn from the challenge of presenting your understanding to others. You will learn through teaching. Office hours are available for individual instruction. No new information will be introduced during office hours or problem solving sessions.

GRADING
Although grades will be assigned based on a numerical score which judges attainment on exams. The course is structured such that if you show a desire to learn, put the effort in, and have some intellectual ability, you can get the grade you want. With this in mind, please take the time to read the Grades, Expectations and Minimum Requirements section, and decide what you want from the course.

“WORD”
If you want copies of old exam….see the course website! All of the problems on the exam will be similar to those in the book or old exams. The processes by which you can solve the problems will be exactly the same as those in the book/old exams/homework. Occasionally, an exam question may be taken directly from the one of these sources. You must understand the processes required to answer assigned problems to do well on
exams. The best use of these practice exams is to study for the exam, then try the practice exam, in one hour, undisturbed. THEN look at the answers, gauge your success, and assess your needs for further study.

CANCELLATION OF CLASSES
If class is cancelled, a make-up lecture and any change in assignment deadlines will be announced.

TIME COMMITMENTS
Typically, for each 1 hr lecture you should aim to put in at least another two hours of your own time. You will need to spend more time preparing for exams. Some students will require more, some less.

GRADES, EXPECTATIONS AND MINIMUM REQUIREMENTS
(adapted from J. H. Williams in The Teaching Professor, Aug 1993)
“D” -55%- Some demonstration of detailed knowledge of organic reactions.
“C” -65%- Detailed knowledge of structure and bonding, be able to show movement of electrons during reactions, know individual organic reactions.
“B” -75%- Requirements for a “C”, plus some demonstrated success of multistep synthesis of molecules, some success showing movement of electrons for multistep reactions.
“A” -88%- Requirements for a “B”, plus: write consistently good complete pathways for multistep reactions based on simple mechanistic concepts showing flow of electrons in each step. Propose good syntheses for molecules using a string of individual organic reactions.

““A” students have virtually perfect performance. Their commitment to the class resembles that of the teacher. They always read the assignment, and their attention to detail is such that the occasionally catch the teacher’s mistakes (we all make them!). An “A” student is CREATIVE, COMMITTED, ORGANIZED, and CURIOUS, has a RETENTIVE MIND (and exercises it), has a WINNING ATTITUDE, and SHOWS INITIATIVE.”

If every student gets 88+%, everyone gets an “A”

SOME STUDY TIPS
Understand and Rationalize. Read the text, prepare your own summaries. Typically each section in the text can be generalized in one or two lines or equations. Read the chapter summaries. Do you understand each point? Can you apply each concept? Work as many of the problems in the book as possible. Do them in order. If you have no trouble with the first few parts of a multi-part question, you might want to pick a few of the latter parts at random. Study in groups. Keep up to date! Ask Questions!!

GEORGIA TECH HONOR CODE
All students are expected to abide by the Georgia Tech Honor Code (www.honor.gatech.edu)
<table>
<thead>
<tr>
<th>Topic</th>
<th>Prelecture reading</th>
<th>Lecture #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conjugated Systems and Aromaticity</td>
<td>13.1-10</td>
<td>1</td>
</tr>
<tr>
<td>Conjugated Systems and Aromaticity</td>
<td>14.1-11</td>
<td>2</td>
</tr>
<tr>
<td>Reactions or Arenes</td>
<td>15.1-9</td>
<td>3</td>
</tr>
<tr>
<td>Reactions or Arenes</td>
<td>15.10-15, 20.5-8</td>
<td>4</td>
</tr>
<tr>
<td>Exam 1 & 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aldehydes and Ketones</td>
<td>12.1-4, 16.1-6</td>
<td>4</td>
</tr>
<tr>
<td>Aldehydes and Ketones</td>
<td>16.7-9, 12.5-9</td>
<td>5</td>
</tr>
<tr>
<td>Aldehydes and Ketones</td>
<td>16.10-15</td>
<td>6</td>
</tr>
<tr>
<td>Acid Derivatives</td>
<td>17.1-9</td>
<td>7</td>
</tr>
<tr>
<td>Acid Derivatives, Amines</td>
<td>17.10-12, 20.1-4, 11-13</td>
<td>8</td>
</tr>
<tr>
<td>Exam 3 & 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enols and Enolates</td>
<td>18.1-8</td>
<td>9</td>
</tr>
<tr>
<td>Enols and Enolates</td>
<td>18.9-11, 19.1-5</td>
<td>10</td>
</tr>
<tr>
<td>Enols and Enolates</td>
<td>19.6-9</td>
<td>11</td>
</tr>
<tr>
<td>Enols and Enolates/Review</td>
<td>Problems</td>
<td>12</td>
</tr>
<tr>
<td>Final Exam (Exam 5 & ACS Multiple Choice)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>