Nucleation of DNA Condensation by Static Loops: Formation of DNA Toroids with Reduced Dimensions

M. Richard Shen,† Kenneth H. Downing,‡ Rod Balhorn,† and Nicholas V. Hud*§

Biology and Biotechnology Research Program
Lawrence Livermore National Laboratory
Livermore, California 94551

Life Sciences Division
Lawrence Berkeley National Laboratory
Berkeley, California 94720

School of Chemistry and Biochemistry
Parker H. Petit Institute of Bioscience and
Bioscience, Georgia Institute of Technology
Atlanta, Georgia 30332

Received January 19, 2000

Controlling DNA condensation is presently of interest for the development of nonviral approaches to gene therapy.1 Toward this end, a number of studies have investigated the relationship between the structure of novel DNA condensing agents and the morphology of their associated DNA condensates.2 Additionally, a wide range of multivalent cations have been studied which condense DNA into toroidal structures.3 In contrast, the effect of DNA structure (e.g. bends) prior to condensation has received relatively little attention.2,4 Under these conditions, the condensation of DNA can have a profound effect on the size of toroidal condensates formed when the entire polymer is condensed by multivalent cations.

Previously, we presented a model for DNA toroid formation in which the initial step is the spontaneous formation of a single loop along the DNA polymer.2 This loop was proposed to act as a nucleation site for DNA condensation and to be responsible for defining the size and morphology of the toroid. These loops would form as the result of random polymer fluctuations in static curvature into an otherwise linear duplex DNA polymer.5 This loop was proposed to act as a static curvature.6

The loop initiation model for toroid formation also suggests a mechanism by which toroid size could be altered. That is, if a static loop or multiple loops were introduced into an otherwise linear DNA polymer, these loops would provide a site for toroid nucleation temporally favored over loops formed by random polymer fluctuations. Controlling the size of these static loops would then provide a means for altering toroid dimensions.

To investigate the effect of static loops on toroid formation we examined the condensation of a DNA polymer with and without the incorporation of curved DNA. This curved DNA was produced by A-tract sequence-directed curvature. Briefly, an A-tract is a DNA sequence of four to eight consecutive adenine residues.7 A single A-tract can produce a bend as large as 20° in the helical axis of duplex DNA,8 and long-range static curvature is produced by multiple A-tracks if their incremental bends are in phase with the helical repeat of DNA (~10.5 bp). We have produced a series of DNA polymers based upon a 2961 bp linearized plasmid DNA (pBluescript II SK-, Stratagene, La Jolla) which contain an insert of one, two, three, or four tandem copies, respectively, of the 173 bp sequence 5′-ATCCATGCACCAAAACACGCGCCAAAACACGCGC-3′ (Figure 1).9

DNA polymers (10 µg/mL in TE buffer, pH 7.5) were condensed from solution by the addition of hexammine cobalt(III) (100 µM) and examined by transmission electron microscopy (TEM) (Figure 2).9 Toroid condensates produced by polymers containing two or more copies of the 173 bp A-tract insert typically measured 45 nm in outside diameter with a 10 nm diameter hole. Assuming a circular cross section and hexagonal packing between DNA helicies,10 these toroids could contain up to three of the approximately 3 kb DNA polymers.

DNA polymers without the A-tract inserts (i.e., linear pBluescript II SK-DNA) were also examined after condensation by hexammine cobalt(III). These polymers produced toroids which measured 130 nm in outside diameter with a 40 nm diameter hole (Figure 2). The amount of DNA in these toroids could be in excess of fifty 2961 bp polymers per toroid.

The axial bend of a single A-tract (i.e., A17) has been estimated to be 17° to 21°.11,12 Thus, the 15 phased A-tracts of our 173 bp insert sequence would be expected to produce an arc of 255° to 315° with a radius of curvature as small as 10 nm. Electron micrographs of partially condensed DNA polymers containing four tandem copies of the 173 bp A-tract sequence reveal DNA circles with a radius of curvature of approximately 12.5 nm (Figure 3), which corresponds to 230 bp per circle. This is in good agreement with the previous estimate for A-tract induced bending, and also confirms that a single copy of our 173 bp insert would be insufficient to produce a complete circle. The similar dimensions of the small toroids (Figure 2A) and the circles of partially coiled DNA (Figure 3A), as well as the apparent lack of small toroids in the condensates of DNA polymers containing only one copy of the 173 bp insert (unpublished data), support the formation of small toroids as being the result of toroid nucleation on static circles produced by the curved A-tract inserts.

DNA polymers over a wide range of lengths (i.e., <1 to 48 kb) have been shown to produce toroids of approximately 100 nm in outside diameter,13 with the toroids formed by shorter polymers producing a correspondingly greater number of poly-

* To whom correspondence should be addressed. Email: hud@chemistry.gatech.edu
† Lawrence Livermore National Laboratory.
‡ Lawrence Berkeley National Laboratory.
§ Georgia Institute of Technology.
(1) For a recent review, see: Luo, D.; Saltzman, W. M. Biopolymers 1998, 37, 1354.
molecule is not curved. In another study, the introduction of a
formation of smaller toroids even when the majority of the
results demonstrate that
localized
Harries, D.; Gelbart, W. M. Biophys. J.
the formation of large toroids is
primarily produced small toroids (Figure 3). This indicates that
as
of static loops, were also observed at a lower frequency (as low
Larger toroids, similar in size to those produced in the absence
nucleated faster or in a more synchronous manner. We
propose that this is because each larger toroid was spontaneously
nucleated on a DNA molecule which then proceeded to incor-
porate many other molecules before they had successfully
nucleated toroids of their own, whereas the small toroids
completed nucleation faster or in a more synchronous manner.
Larger toroids, similar in size to those produced in the absence
of static loops, were also observed at a lower frequency (as low
as ~2%) in condensates of plasmids with A-tract inserts that
primarily produced small toroids (Figure 3). This indicates that
the formation of large toroids is not blocked by the introduction
of the A-tract repeats, providing additional support that smaller
toroids are only kinetically favored over the larger ones.

Anomalously small toroids have previously been reported in
the condensates of homogeneously curved DNA. However, our
results demonstrate that localized curvature can promote the
formation of smaller toroids even when the majority of the
molecule is not curved. In another study, the introduction of a

G-rich sequence into plasmid DNA was shown to decrease the
size of toroidal condensates by 22%, but apparently by a different
mechanism from that reported here, as the G-rich insert was shown
to lack static curvature.4b

The results presented here support the hypothesis that toroid
size can be influenced by the size of the first loop (or loops)
upon which DNA is condensed.5 However, it should be noted
that the small toroids were observed in samples placed on EM
grids within 5 min of mixing DNA and hexammine cobalt(III).
When longer times were allowed between the initiation of DNA
condensation and deposition on EM grids (e.g. 30 min), fewer
small toroids were observed and larger aggregates appeared. This
suggests that the smaller toroids represent a metastable state,
which may be unfavorable because of the small DNA radius of
curvature. Thermodynamic models have been developed to
explain the observed size of toroidal DNA condensates,11b,12
however, it does not appear that sufficient data presently exist to
adequately test the validity of these models. Further studies of
toroid nucleation using static loops of various diameters, and their
incorporation into polymers of different lengths, may provide the
information required to determine what ultimately governs the
size of DNA toroids. Such studies are presently underway.

Acknowledgment. Work performed at LLNL was conducted under
the auspices of the U.S. DOE under Contract W-7405-ENG-48. Work
performed at LBNL was supported by NIH Grant GM51487 and by
OHER, U.S. DOE under Contract DE-ACO3-76SF-00098.

Supporting Information Available: Experimental procedures for the
preparation of DNA and samples for TEM (PDF). This material is available
free of charge via the Internet at http://pubs.acs.org.

JA000200A

(12) (a) Bloomfield, V. A. Biopolymers 1997, 269-282. (b) Park, S. Y.;