Practice Exam 4ii - Answers

1. B, E, J, N, R, X, Y, DD

2.

3. H₂, Lindlar's catalyst or Ni₂B; HBr + peroxides;

4. Here are some descriptions of the routes: You should be able to put together the synthetic schemes.

<table>
<thead>
<tr>
<th>The challenge: you cannot selectively brominate adjacent to an alcohol.</th>
<th>The challenge: to install a hydroxyl and a methoxy group trans to one another.</th>
<th>The challenge: To incorporate an alkyne at the end of the C=C of the starting material.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retrosynthesis: You know how to make a bromohydrin from an alkene. The alkene required here is cyclohexene, which you can make from cyclohexanol.</td>
<td>Retrosynthesis: This is tricky – but you need to recognize that the product can be formed by nucleophilic ring opening of cyclohexene oxide with methoxide.</td>
<td>Retrosynthesis: The product can be made by reaction of a 1° bromide with sodium acetylide in an Sn2 reaction. The 1° bromide can be made by anti-Markovnikov addition of HBr to the alkene starting material.</td>
</tr>
<tr>
<td>2 steps – Treat the alcohol with a strong acid to promote dehydration to give cyclohexene. Treat the cyclohexene with Br₂ in H₂O.</td>
<td>2 steps – Epoxidation (mCPBA) of cyclohexene gives an epoxide, which upon treatment with NaOCH₃ give the product.</td>
<td>2 steps- Anti-Markovnikov addition of HBr in the presence of peroxides gives 1-bromo-3,3-dimethylbutane. Reaction with sodium acetylide gives the final product.</td>
</tr>
</tbody>
</table>

5. Base promoted double dehydrobromination of 1,2-dibromocyclohexane gives 1,3-cyclohexadiene, not cyclohexyne. Cyclohexyne would be very unstable because the sp hybridized carbon atoms are forced to bend in a relatively small ring. This strain energy is so high that cyclohexyne has never been isolated at room temperature.

![Actual](actual.png) | ![NOT](NOT.png)