CHEM 1311

Course web page
http://web.chemistry.gatech.edu/~barefield/1311/chem1311a.html

Outline for first exam period

• Atomic structure and periodic properties
• Structures and bonding models for covalent compounds of p-block elements
 – Lewis Structures, Valence Shell Electron Repulsion (VSEPR) concepts and oxidation state
 – Hybridization
 – Composition and bond energies in binary p-block compounds
 – Molecular orbitals in homonuclear diatomics

First Exam – Friday, September 15
Atomic structure and periodic properties

- Early experiments concerning atomic structure and properties of electromagnetic radiation
- Bohr model of the hydrogen atom
- Demise of Bohr model
- Wave equation and wave model for atom
- Wave functions and properties
- Orbital representations
- Multielectron atoms
- Periodic properties and their origin

Properties of Atoms

- Consist of small positively charged nucleus surrounded by negatively charged electrons, some at large distances from the nucleus
- Nucleus consists of positively charged protons and neutral neutrons
- Charges of proton and electron are equal
- The atomic number (and nuclear charge) of an atom is equal to the number of protons in its nucleus.
- The mass number of an atom is equal to the number of protons plus the number of neutrons
- Isotopes are atoms with the same atomic number but different mass numbers, i.e., ^1H, ^2H, ^3H or ^{12}C, ^{13}C, ^{14}C
Atomic Spectra

Irradiation from electronically excited atoms is not continuous

Visible region line spectra could be fitted to simple (empirical) formula

\[
\frac{1}{\lambda} = 1.097 \times 10^7 \text{ m}^{-1} \left(\frac{1}{2^n^2 - 1/n^2} \right)
\]

\[
E = \frac{hc}{\lambda} = 2.178 \times 10^{-18} \text{ J} \left(\frac{1}{2^n^2 - 1/n^2} \right)
\]

Later work showed several series of lines

\[
E = 2.178 \times 10^{-18} \text{ J} \left(\frac{1}{n_2^2 - 1/n_1^2} \right) \quad (n_2 < n_1)
\]

Spectrum of Electromagnetic Radiation

<table>
<thead>
<tr>
<th>Region</th>
<th>Wavelength (Angstroms)</th>
<th>Wavelength (centimeters)</th>
<th>Frequency (Hz)</th>
<th>Energy (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radio</td>
<td>> 10^9</td>
<td>> 10</td>
<td>< 3 x 10^9</td>
<td>< 10^{-5}</td>
</tr>
<tr>
<td>Microwave</td>
<td>10^6 - 10^9</td>
<td>10 - 0.01</td>
<td>3 x 10^9 - 3 x 10^{12}</td>
<td>10^{-6} - 0.01</td>
</tr>
<tr>
<td>Infrared</td>
<td>10^6 - 7000</td>
<td>0.01 - 7 x 10^{-5}</td>
<td>3 x 10^{12} - 4.3 x 10^{14}</td>
<td>0.01 - 2</td>
</tr>
<tr>
<td>Visible</td>
<td>7000 - 4000</td>
<td>7 x 10^{-5} - 4 x 10^{-5}</td>
<td>4.3 x 10^{14} - 7.5 x 10^{14}</td>
<td>2 - 3</td>
</tr>
<tr>
<td>Ultraviolet</td>
<td>4000 - 10</td>
<td>4 x 10^{-5} - 10^{-7}</td>
<td>7.5 x 10^{14} - 3 x 10^{17}</td>
<td>3 - 10^3</td>
</tr>
<tr>
<td>X-Rays</td>
<td>10 - 0.1</td>
<td>10^{-7} - 10^{-9}</td>
<td>3 x 10^{17} - 3 x 10^{19}</td>
<td>10^3 - 10^{5}</td>
</tr>
<tr>
<td>Gamma Rays</td>
<td>< 0.1</td>
<td>< 10^{-9}</td>
<td>> 3 x 10^{19}</td>
<td>> 10^5</td>
</tr>
</tbody>
</table>
Visible region of electromagnetic spectrum

Properties of Electromagnetic Radiation

\[c = \lambda \nu \]

\[c = 2.998 \times 10^8 \text{ m s}^{-1} \text{ (vacuum); } \lambda \text{ in meters; } \nu \text{ in cycles per sec or s}^{-1} \]

1 cycle per sec is 1 Hz (Hertz)

\[E = h \nu = hc/\lambda \]

With Einstein's relationship \(E = mc^2 \)

\[hc/\lambda = mc^2 \]

\[\lambda = h/mc \]
Bohr Model

Rule 1. Electron can exist in stationary states; requires fixed energy.

Rule 2. Possible stationary states determined by quantization of angular momentum \((mvr)\) in units of \(\hbar/2\pi\) \((mvr = nh/2\pi)\)

Rule 3. Transitions between stationary states occur with emission or absorption of a quantum of energy, \(\Delta E = h\nu\)

For a stationary state to occur for the electron moving in a planetary orbital about the nucleus, the centripetal force must equal the electrostatic attraction of the electron by the nucleus

\[
\frac{mv^2}{r} = \frac{(Ze)e}{4\pi\varepsilon_0 r^2}
\]

Employing the expression for angular momentum from Rule 2:

\[
r = n^2\hbar^2 e/mZe^2 \quad \nu = Z\nu^2/2\hbar\varepsilon_0
\]

Note that radius of orbits increase with \(n^2\) and decrease with \(Z\)

Total Energy for atom \((E)\) = K.E. + P.E. = \(\frac{1}{2}mv^2 + (-Ze^2/4\pi\varepsilon_0 r)\)

from the previous slide \(mv^2 = Z\nu^2/2\pi\varepsilon_0\)

so that \(E = \frac{1}{2}(Ze^2/4\pi\varepsilon_0 r) - (Ze^2/4\pi\varepsilon_0 r) = -\frac{1}{2}(Ze^2/4\pi\varepsilon_0 r) = -Ze^2/8\pi\varepsilon_0 r\)

from the previous slide \(r = n^2\hbar^2 e/mZe^2\)

\[
E = -me^4Z^2/8\varepsilon_0 n^2\hbar^2
\]

\[
E = -(2.18 \times 10^{-18} \text{ J}) Z^2/n^2
\]

\[
E = -(13.6 \text{ eV}) Z^2/n^2
\]

Constants

\[
\begin{align*}
m & = 9.10939 \times 10^{-11} \text{ kg} \\
e & = 1.60218 \times 10^{-19} \text{ C} \\
c & = 8.8538 \times 10^{-12} \text{ C}^2 \text{ m}^{-1} \text{ J}^{-1} \\
h & = 6.62608 \times 10^{-34} \text{ J} \text{ s} \\
1 \text{ eV} & = 1.6022 \times 10^{-19} \text{ J}
\end{align*}
\]

\(\Delta E = \text{final energy – initial energy}\)

\(\Delta E = -13.6 Z^2 \text{ eV} \left(1/n_f^2 - 1/n_i^2\right)\)
Further evidence for unique properties of light

Photoelectric Effect

K.E.(ejected electrons) = hν(impinging light) - w(work function)

![Photoelectric Effect Diagram]

Compton Effect

Momentum and energy conserved in collisions of light (photons) with electrons

Demise of Bohr Model - Introduction of Wave Model

Heisenberg Indeterminacy (Uncertainty) Principle

\[\Delta x \cdot \Delta (mv) \geq h/2\pi \]

Exact position and exact momentum cannot both be known simultaneously

De Broglie's Hypothesis

\[\lambda = h/mv \]

Particles have wave lengths; proof came from diffraction of electron beam

Schroedinger's Wave Equation

\[\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2} + \frac{8\pi^2 m}{h^2}(E-V)\Psi = 0 \quad (H\Psi=E\Psi) \]

Solution of this equation requires conversion to spherical polar coordinates and the introduction of three constants, which are what we know as quantum numbers, n, ℓ, m_ℓ.
Each combination of \(n \), \(\ell \), and \(m \), value corresponds to an orbital

\(n \) values relate to the energy and size of the orbitals. \(n = 1, 2, 3 \cdots \)

\(\ell \) values specify the total angular momentum of the electron and determines the angular shape of the orbital. \(\ell \)'s have letter equivalents: \(\ell = 0 \) (s), 1 (p), 2 (d), 3 (f), 4 (g), etc. \(\ell = 0 \cdots n-1 \)

\(m \), specifies the orientation of the orbitals in space and the angular momentum with respect to direction. \(m = -\ell \cdots 0 \cdots +\ell \)

With introduction of the fourth quantum number, \(m_s = +1/2, -1/2 \) and the Pauli principle, which states that no two electrons in a given atom can have the same four quantum numbers, the development of electron configurations for multielectron atoms is straight-forward.

\[
E = -\frac{me^4Z^2}{8\varepsilon_0^2n^2h^2} = -13.6 \text{ eV } \frac{Z^2}{n^2} \text{ Same as for Bohr model!!!!}
\]

\[\text{Wave Functions}\]

\[
\Psi_{n,\ell,m\ell}(r,\theta,\phi) = R_{n,\ell}(r)\Theta_{\ell,m\ell}(\theta)\Phi_{m\ell}(\phi)
\]

\[
R_{n,\ell}(r) = \left[\frac{4Z^2(n-\ell-1)!}{n^2a_0^3[(n+\ell)!]^3}\right]^{1/2}\left(\frac{2Zr}{na_0}\right)e^{-Zr/a_0}\frac{L_{\ell+1}}{L_n}\]

\[
R_{1,0}(r) = 2Z^{3/2}a_0^{-3/2}e^{-Zr/a_0}.
\]

\[
R_{2,0}(r) = (1/2\sqrt{2})Z^{3/2}a_0^{-3/2}(2-Zr/a_0)e^{-Zr/2a_0}.
\]

\[
R_{2,1}(r) = (1/\sqrt{6})Z^{3/2}a_0^{-3/2}(Zr/a_0)e^{-Zr/2a_0}.
\]

\[
R_{3,0}(r) = (1/\sqrt{3})Z^{3/2}a_0^{-3/2}(27-18Zr/a_0+2Z^2r^2/9a_0^2)e^{-Zr/3a_0}.
\]

\[
\Theta_{\ell,m\ell}(\theta) = \sin^{\ell+1}P^\ell(\cos \theta)
\]

\[
\Phi_{m\ell}(\phi) = (1/\sqrt{2\pi})e^{im\phi}
\]

<table>
<thead>
<tr>
<th>(\ell)</th>
<th>(m_\ell)</th>
<th>(\Theta)</th>
<th>(\phi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1/\sqrt{2}</td>
<td>1/\sqrt{2}\pi</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>(\sqrt{3}/2)\cos \theta</td>
<td>1/\sqrt{2}\pi</td>
</tr>
<tr>
<td>1</td>
<td>\pm 1</td>
<td>(\sqrt{3}/2)\sin \theta</td>
<td>1/\sqrt{2}\pi e^{\mp \phi}</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>(\sqrt{5}/8)(3\cos^2\theta-1)</td>
<td>1/\sqrt{2}\pi</td>
</tr>
</tbody>
</table>
Representations of orbitals

s Radial functions

\[R_{1,s}(r) = 2a_o^{-3/2}e^{-r/a_o} \]
\[R_{1,0}^2(r) = 4a_o^{-3}e^{-2r/a_o} \]
\[r^2R_{1,0}^2(r) = 4a_o^{-3}r^2e^{-2r/a_o} \]
2s Radial functions

\[R_{2s}(r) = \frac{1}{2\sqrt{2}} a_o^{-3/2} (2-r/a_o) e^{-r/a_o} \]

\[R_{2s}^2(r) = \frac{1}{8} a_o^{-3} (4-2r/a_o + r^2/a_o) e^{-r/a_o} \]

\[r^2 R_{2s}^2(r) = (1/8) a_o^{-3} (4-2r/a_o + r^2/a_o) r^2 e^{-r/a_o} \]

Comparison of ns radial distribution functions

1s

2s

3s
Comparison of 1s, 2s and 2p radial distribution functions

Angular functions as contour maps

- Angular nodes
- Radial nodes
- Relative size
Contour plots of H 2p and C 2p

Contour lines are set at 0.316 of maximum values of $\Psi^2(r,\theta,\phi)$

Multi-electron atoms; Aufbau Principle

<table>
<thead>
<tr>
<th></th>
<th>n=1</th>
<th>n=2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>H</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>He</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>Li</td>
<td>[He]</td>
<td>___</td>
</tr>
<tr>
<td>Be</td>
<td>[He]</td>
<td>___</td>
</tr>
<tr>
<td>B</td>
<td>[He]</td>
<td>___</td>
</tr>
<tr>
<td>C</td>
<td>[He]</td>
<td>___</td>
</tr>
<tr>
<td>N</td>
<td>[He]</td>
<td>___</td>
</tr>
<tr>
<td>O</td>
<td>[He]</td>
<td>___</td>
</tr>
<tr>
<td>F</td>
<td>[He]</td>
<td>___</td>
</tr>
<tr>
<td>Ne</td>
<td>[He]</td>
<td>___</td>
</tr>
</tbody>
</table>
More on multi-electron atoms

- Electron configurations in the third period (n=3) mirror those for the second period.
- In the fourth period (n=4) the 3d orbital energies are lower than the 4p so that these orbitals fill before the 4p. The elements with d electrons are referred to as transition elements.
- Electron configurations of the first transition element series are 4s²3dⁿ except for Cr and Cu, which are 4s¹3d⁶ and 4s¹3d¹⁰, respectively. These irregularities are a result of lower electron-electron repulsion energies.
- Transition metal cations have dⁿ electron configurations.

Periodic properties

- Ionization energy
- Atomic and ionic radii
- Electron Affinity
- Electronegativity
Ionization energy

Ionization energy is the minimum energy required to remove an electron from a gaseous atom (or other species). $E = E^+ + e^-$

Effective nuclear charge

$s & p$ orbital energies vs Z

$Z_{\text{eff}} = Z - \text{shielding constant}$

Effective nuclear charges

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>Li</th>
<th>Be</th>
<th>B</th>
<th>C</th>
<th>N</th>
<th>O</th>
<th>F</th>
<th>He</th>
</tr>
</thead>
<tbody>
<tr>
<td>1s</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.69</td>
</tr>
<tr>
<td>2s</td>
<td>1.28</td>
<td>1.91</td>
<td>2.58</td>
<td>3.22</td>
<td>3.85</td>
<td>4.49</td>
<td>5.13</td>
<td>5.76</td>
<td></td>
</tr>
<tr>
<td>2p</td>
<td></td>
<td></td>
<td>2.42</td>
<td>3.14</td>
<td>3.83</td>
<td>4.45</td>
<td>5.10</td>
<td>5.76</td>
<td></td>
</tr>
</tbody>
</table>
Atomic and ionic radii

Radial distribution functions for alkali metal ions
Electron affinity

Electron affinity is the energy change associated with addition of an electron to a atom or ion. \(E + e^- = E^- \)

![Graph showing electron affinity values for different elements]

Note that EA’s have been historically recorded as the negative of the energy associated with the electron attachment reaction.

Electronegativity

Electronegativity is the attraction of an atom for electron density in a chemical bond.

Pauling electronegativities

<table>
<thead>
<tr>
<th></th>
<th>H 2.20</th>
<th>Li 0.98</th>
<th>Be 1.57</th>
<th>B 2.04</th>
<th>C 2.55</th>
<th>N 3.04</th>
<th>O 3.44</th>
<th>F 3.98</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na</td>
<td>Mg 1.31</td>
<td>Al 1.61</td>
<td>Si 1.90</td>
<td>P 2.19</td>
<td>S 2.58</td>
<td>Cl 3.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K 0.82</td>
<td>Ca 1.00</td>
<td>Ga 1.81</td>
<td>Ge 2.01</td>
<td>As 2.18</td>
<td>Se 2.55</td>
<td>Br 2.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rb 0.82</td>
<td>Sr 0.95</td>
<td>In 1.78</td>
<td>Sn 1.96</td>
<td>Sb 2.05</td>
<td>Te 2.10</td>
<td>I 2.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cs 0.79</td>
<td>Ba 0.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>