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Abstract—Local conformation is an important determinant of RNA catalysis and binding. The analysis of RNA conformation is

particularly difficult due to the large number of degrees of freedom (torsion angles) per residue. Proteins, by comparison, have many

fewer degrees of freedom per residue. In this work, we use and extend classical tools from statistics and signal processing to search

for clusters in RNA conformational space. Results are reported both for scalar analysis, where each torsion angle is separately studied,

and for vectorial analysis, where several angles are simultaneously clustered. Adapting techniques from vector quantization and

clustering to the RNA structure, we find torsion angle clusters and RNA conformational motifs. We validate the technique using well-

known conformational motifs, showing that the simultaneous study of the total torsion angle space leads to results consistent with

known motifs reported in the literature and also to the finding of new ones.

Index Terms—RNA backbone, statistical analysis, vector quantization, local conformations, torsion angles, conformational motifs.

�

1 INTRODUCTION

NUCLEIC acid polymers play important roles in the
storage and transmission of information. RNA can

both encode genetic information and catalyze chemical
reactions [9]. As the only biological macromolecule capable

of such diverse activities, it has been proposed that RNA

preceded DNA and protein in early evolution [2]. Over the

past 15 years, the database of RNA conformation and

interaction (the NDB [24]) has evolved rapidly or, to be

more accurate, has exploded, in both size and complexity.

The database has been transformed from tRNA and RNA

oligonucleotides to moderately sized globular RNAs to
massive complexes containing multiple large RNA mole-

cules, many proteins, ions, water molecules, etc. These large

complexes are a rich source of new information, but do not

surrender to traditional methods of analysis. These com-

plexes are of sufficient size that one can gather and analyze

statistics that were not previously available. The develop-

ment of techniques for discovering statistical rules govern-

ing RNA conformation and interaction will help answer
fundamental biological and biochemical questions includ-

ing those related to nonprotein enzymology and the origins

of life. The goal here is to discover repetitive elements of

interaction and conformation (motifs).
Murray et al. [20] noted the “rotameric” nature of RNA

and articulated that RNA occupies an energy landscape
governed largely by bond torsions. Torsion angles show
clear frequency clustering, in one dimension. However, the

analysis of RNA conformation presents particular pro-
blems. For protein backbones, for each amino acid residue,
there are two torsional degrees of freedom: � and  .
Observed protein conformations are generally confined to
limited regions of this two-dimensional space (Ramachan-
dran plot) [26], [27]. For RNA, the dimensionality is much
greater. For each nucleotide residue, there are seven
independent torsion angles, see Fig. 1 and [29]. Each RNA
residue has six backbone torsional angles and one angle �
that describes the rotation of the base relative to the sugar.
The sugar has various puckering modes that are not
independent of torsion angle �. Differences in dimension-
ality are a distinguishing characteristic of RNA conforma-
tional analysis in comparison to protein conformational
analysis.

To deal with the high dimensionality or RNA conforma-

tion, several approaches have been explored. A reduced set

of two pseudotorsional angles per residue was proposed in

[5]. This reduction in dimensionality from seven to two

simplifies the analysis, but sacrifices information. Alterna-

tively, work in [10], [20], [28] attempts to retain information

from the full conformational space. The approach in [10]

gives a structural alphabet based on the discretization of the

conformation distribution function via binning the torsion

angles taking one angle at a time. This method is called visual

binning because it is based on visual inspection of torsion

angle frequency distributions to define boundaries between

conformational classes.

The approaches of [20], [28] decompose the seven-

dimensional space into various subspaces of three dimen-

sions. It is possible to locate centers of frequency clusters in

torsional subspaces. The restriction to three-dimensional

subspaces arises from requirements for manual (visual)

detection of the frequency clusters. In addition, a filtering

stage is described in [20] to remove conformations that are

suspected to arise from measurement error. Finally, various

elemental units can be parsed during conformational

analysis of an RNA polymer. Murray et al. [20] suggest a

base-to-base unit (a “suite”) instead of the chemically

inspired, and more conventional, phosphate-to-phosphate
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unit (a residue); see Fig. 1.1 The work of [28] utilizes a

dinucleotide building block to attempt to include the

correlations between neighboring residues.
The primary drawback of low-dimensional methods is

that some clusters might avoid detection and defy descrip-
tion. Several distinct clusters at full dimensionality can be
compressed into a single cluster at low-dimensionality. A
limitation to three-dimensional subspaces is arbitrary and
might inaccurately characterize some regions of RNA
conformational space.

Here, all seven dimensions of RNA conformation are
analyzed simultaneously with methods from classical signal
processing. We use high-dimensional clustering, mainly
vector quantization.2 These methods have the potential to be
automatic and parameter-free. Here, to avoid overclustering
of high-frequency conformations, we impose known con-
formations, such as A-conformation, onto the clustering. A
key contribution of this work is to show that one can
successfully perform simultaneous analysis of the whole of
RNA conformation space, leading not only to results in
agreement with techniques based on significant human
intervention, but also to the finding of new motifs. Vector
quantization is also a natural extension to scalar work such
as that reported in [10], although the framework presented
here is not limited to the use of this particular clustering
technique and others might be able to exploit intrinsic
correlations between RNA torsion angles even further (see
Section 6).

The work here continues the research line of [10] (see also
[21], [22]), attempting to resolve some limitations there.
Vector quantization gives well-defined distortion and quality

metrics. It does not involve visual inspection and computes
high-dimensional clusters. The VQ approach is validated
and/or reinforced3 by comparison of the output with that of
previously reported methods, as well as with the structural
motifs library (SCOR) [14]. The VQ method allows us to
describe potential motifs that were not found in [10].

We should note that we do not claim that the
VQ approach described here based on torsion angle
clustering is optimal in any sense, merely that it is a logical
continuation of the clustering methods described in [10],
which is easy to apply, and allows one to rediscover known
motifs and to discover some possible new ones as well.
Other methods based on sequence analysis or on other
search methodologies (see, e.g., [12]) may be more appro-
priate in various circumstances and, ultimately, one would
want to combine the different approaches. We regard the
work in this paper as a first step in employing vector
clustering techniques from statistics and signal processing
to study an important problem in bioinformatics.

The remainder of this paper is organized as follows: In
Section 2, we provide the basic background on vector
quantization. In Section 3, we begin with a particular case of
vector quantization, the scalar case, which permits us not
only to introduce the basic concepts but also to show that
the results reported in [10] are replicated and refined. In
Section 4, we use the full power of vector quantization to
analyze sets of four and seven torsion angles simulta-
neously, extending some of the results reported previously
in such works as [10], [20]. We moreover present a
modification of the basic vector quantization algorithm,
namely, cluster merging, which is motivated by RNA
properties and is needed to adapt this classical signal
processing technique to the study of RNA structure.
Section 5 presents the motifs that were found by our
method and compares our findings with known structural
motifs. Finally, in Section 6, we summarize our methods as
well as describe some key research directions.4 In the
Appendix, we summarize some of the key results of the
visual binning method [10] for the convenience of the
reader.

2 BACKGROUND ON SCALAR AND VECTOR

QUANTIZATION

Vector quantization (VQ) is a clustering technique originally
developed for lossy data compression [7], [8], [17]. In 1980,
Linde et al. [17] proposed a practical VQ design algorithm
based on a training sequence. The use of a training
sequence bypasses the need for multidimensional integra-
tion, thereby making VQ a practical technique, implemen-
ted in many scientific computation packages such as Matlab
(www.mathworks.com). This algorithm, of course, cannot
guarantee convergence to the global minima of the
optimization problem described below.
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Fig. 1. RNA with six backbone and the glycosidic torsion angles labeled.
The four identifier torsion angles are shaded. The two alternative ways
of parsing out a repeat are indicated. A conventional nucleotide residue
spans from phosphorous atom and 5’ oxygen atom, (changing residue
number between 3’O and P), whereas an RNA suite is from sugar to
sugar (or base to base).

1. See the Appendix in our extended report, http://www.ima.umn.edu/
preprints/jun2004/1981.pdf, for an attempt at comparison of the two
parsing techniques.

2. Previously, vector quantization was used in the context of protein
structure, e.g., [11].

3. By “validate” and “reinforce,” we mean that we show the agreement
of the results here reported with those in [14] as well as those previously
reported by scalar, visually-based, quantization of torsion angles.

4. We have also included appendices in our extended report available at
http://www.ima.umn.edu/preprints/jun2004/1981.pdf. These give some
preliminary results on the use of other techniques from statistical signal
processing, mainly mutual information, for comparing residues and suites,
and principal component analysis, for the study of RNA motifs.



A VQ is analogous to an approximator. Fig. 2 presents a
two-dimensional example of vector quantization. Here, every
pair of numbers falling in a particular region is approximated
by the marked “center” associated with that region (VQ is, of
course, closely related to Voronoi diagrams).

The general VQ design problem can be stated as follows:
Given a vector source with known statistical properties, a
distortion measure, and number of desired codevectors,
find a codebook (the set of all red stars) and a partition (the
set of blue lines) that result in the smallest average
distortion.

We assume that there is a training sequence (e.g., the
measured torsion angles in RNA backbone) consisting of
M source vectors of the form T ¼ fx1; x2; . . . ; xMg. We
assume that the source vectors are k-dimensional, e.g.,
xm ¼ fxm;1; xm;2; . . . ; xm;kg, for 1 � m �M. Let N be the
number of desired codevectors and let C ¼ fc1; c2; . . . ; cNg
be the codebook, where each cn, 1 � n � N , is, of course,
k-dimensional as well. Let Sn be the cell associated with the
codevector cn and let P ¼ fS1; S2; . . . ; SNg be the corre-
sponding partition of the k-dimensional space. If the source
vector xm is in the encoding region Sn, then it is
approximated by cn, and let us denote by QðxmÞ ¼ cn (if
xm 2 Sn) the corresponding map (each vector is simply
associated to the closest center from C). Then, assuming, for
example, a squared error distortion measure, the average
distortion is given by

D :¼ 1

M

XM

m¼1

k xm �QðxmÞ k2;

where k e k2:¼ e2
1 þ e2

2 þ . . .þ e2
k:

ð1Þ

The design problem then becomes the following: Given the
training data set T 5 and the number of desired codebooks (or
clusters)N , find the cluster centers C and the space partition
P such that the distortion D is minimized. This problem can
be efficiently solved with the LBG algorithm [7], [17] and, as
mentioned above, its implementation can be found in
popular scientific computing programs. We should, of
course, recall that convergence to the global minima is not
guaranteed with this algorithm. Additional details on the
technique can be found in [7], [8], as well as in the tutorial
located at [4], from which we have prepared this summary.

In future work, we plan to use more advanced techniques,
such as those reported in [23].6

3 SCALAR QUANTIZATION: AUTOMATIC BINNING OF

SINGLE TORSION ANGLES

To provide an accessible introduction to VQ, a brief
discussion of scalar quantization (SQ) is provided here.
SQ is a natural extension of our previous work and is
extensible to VQ. With SQ, one can automate the previous
binning method described in [10], where torsion angles are
treated individually. In [10], conformational space is
partitioned into boxes, each containing one conformational
state, i.e., rotamer, or a subset of conformational states; see
also [20]. The box boundaries were set by visual inspection,
using minima of torsion angle frequency distributions as
guides.

As was known from [25], [30], four torsional angles
ð�; �; �; �Þ (which we call the identifier angles) are, in general,
sufficient for this classification. Here, the results of that
work are reproduced with SQ. In the Appendix, more
details are described from the work in [10], reproducing key
tables for the convenience of the reader.

We argued in [10] that the frequency histograms of the
four identifier torsion angles have a clear multipeak
structure; see Fig. 3 and details below. Since the peak
structure is the cornerstone for our proposed classification
method, we describe here these results for a larger set of
RNA structures than those reported in [10]. In particular,
two data sets are used. One follows the work reported in
[10] and is for a single RNA with 2,914 residues (HM LSU
23S rRNA, RR0033), while the second one follows work
reported in [20], and is for a collection of 132 RNAs,7 giving
a total of 10,463 residues (redundancies have not been
eliminated). Here, as in the rest of this work, residues with
undefined or unknown torsion angles were omitted.
Coordinates were obtained from the Nucleic Acid Database
[24]. We have not performed the filtering of [20]. That
method may indeed improve the results. As mentioned
above, in the SQ, we first limit the analysis to the torsion
angles ð�; �; �; �Þ (see Fig. 1) since the others are either
dependent on these angles or have distributions which are
almost unimodal [25], [30]. There is no intrinsic limitation
which restricts one to this reduced set of angles and, indeed,
being more automatic, the process can be easily applied to
larger sets. As this is an unsupervised clustering technique,
none of the residues were labeled. As we detail later on,
clusters are merged if needed based on biochemical
information and clusters proximity.

Fig. 3 shows the distributions for the four angles from the
large and small data sets. The two data sets of histogram
features have a strong resemblance, suggesting the generality
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5. Which can become the whole data set when VQ is used as a clustering
technique as in our work.

6. Vector quantization is often also known in the literature as k-means
clustering.

7. With NDB and PDB codes: ar0001, 02, 04, 05, 06, 07, 08, 09, 11, 12, 13,
20, 21, 22, 23, 24, 27, 28, 30, 32, 36, 38, 40, 44; arb002, 3, 4, 5; arf0108; arh064,
74; arl037, 48, 62; arn035; dr0005, 08, 10; drb002, 03, 05, 07, 08, 18; drd004;
pd0345; pr0005, 06, 07, 08, 09, 10, 11, 15, 17, 18, 19, 20, 21, 22, 26, 30, 32, 33,
34, 36, 37, 40, 46, 47, 51, 53, 55, 57, 60, 62, 63, 65, 67, 69, 71, 73, 75, 78, 79, 80,
81, 83, 85, 90, 91; prv001, 04, 10, 20, 21; pte003; ptr004, 16; rr0005, 10, 16, 19,
33; tr0001; trna12; uh0001; uhx026; ur0001, 04, 05, 07, 09, 12, 14, 15, 19, 20, 22,
26; urb003, 08, 16; urc002; urf042; url029, 50; urt068; and urx053, 59, 63, 75.

Fig. 2. Two-dimensional example of clustering via (vector) quantization.

All the points in a given interval (in one dimension) or a given cell (two

dimensions) are represented by the marked “center.”



of the cluster classification method for analysis of RNA
conformation.

One potential problem with visually-based classification
methods such as the binning in [10] and the technique
presented in [20], in addition to being limited to ad hoc
observations of three or less angles at a time (see more on
this below), is that the resolution (and amount of data) may
not be sufficiently fine, which may make it difficult to
distinguish distinct features in the data, and clusters can be
confused and merged.

This issue is demonstrated, for example, in the behavior
of the torsional angle �. For �, the visually observed
frequency distribution contains a single peak (centered
about 290 degrees) in addition to a featureless plateau that
extends over 200 torsional degrees. For visual binning [10],
� was allocated to two bins. The first bin contains the
290 degree peak. The second bin, which does not
correspond to a single conformational state, contains the
extended plateau and, in visual binning [10], is called
“other.” However, potential energy calculations predict that
� should partition into three peaks [21], [22], [29]. The
filtering method of Murray et al. carves � into the same
three peaks. As demonstrated below, our approach retains
these details without the need for filtering.

Understanding the peak shape of each cluster is crucial
for probabilistic RNA design and for understanding local
dynamics of folding. The peak shapes of the clusters contain
important information on RNA dynamics, but might also be
influenced by coordinate error. It appears that better fitting
for the major clusters (see below for the limits of these
clusters) is obtained using exponential distributions and not
Gaussian distributions as argued, for example, in [10]. For
the first data set, the kurtosis8 for the main peak is 5.3 for �
and 4.6 for �, clearly indicating a significant deviation from
Gaussian distributions (whose kurtosis is 3). The log-
likelihood while fitting an exponential function improves

by 24 percent with respect to fitting a Gaussian for the �
torsion angle and by 23 percent for the � torsion angle.
Similar behavior is observed for the other data set,
although, in some cases, the improvement is more moderate
(e.g., for the first mode of � in the first data set, the
improvement is about 16 percent).

Using the clustering technique described in the previous
section,9 and requesting the number N of codevectors
following [10] (or just from visual inspection for now, this
will be made automatic later), we found the codevectors or
centers of the clusters C ¼ fc1; . . . ; cNg given in Table 1.
Later on, for the classification, we enumerate the clusters in
each coordinate by increasing values. For example, a
residue whose torsional angles are in the third peak (center)
in �, the first in � and �, and the third in � will be
enumerated as 3113; see Table 1.

The results are similar for the two data sets. For �, two of
the centers are very close to each other and will be merged
during clustering. This demonstrates a possible problem of
overclustering by scalar quantization (or any other auto-
matic clustering technique). In the next section, a simple
merging algorithm is proposed to treat this difficulty. Once
again, although the number of clusters is predefined, this
could be accomplished as part of the automatic process; see
Section 4.

Regarding �, if additional clusters are desired, e.g., three
clusters for the first data set (see our discussion above),
these clusters are automatically found at 1) 85.86, 2) 188.25,
and 3) 289.27, thereby splitting the large tail (following the
description in [20], but in an automatic fashion). These
additional centers will also appear when considering
torsion angles in vectorial form in the next section and will
be used to search for motifs. Further increasing the number
of clusters does not produce, in general, a significant change
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Fig. 3. Distributions of the torsion angles �, �, �, and � for the single RNA (first row) and the collection of RNAs (second row). We observe the

similitude among the distributions, marking the presence of “rotamers” not only for a given RNA but also across RNAs. We also observe clear

modes, which are automatically detected by the proposed clustering technique. In addition, note that the � torsion angle has a large tail not present in

the other distributions.

8. The degree of peakedness of a distribution, defined as a normalized
form of the fourth central moment of a distribution, �4=ð�2Þ2, where �i
denotes the ith central moment.

9. Recall that, due to algorithmic limitations, the optimality is only local
since we are not guaranteed to converge to the global optima of D. From the
validation results presented later, we have not observed this to present
significant problems.



in the distortion D, an indication that the selected number

of clusters is sufficient; see Section 4.
The clustering (binning) method that results from scalar

quantization as described so far has one major difference

fromh the one described in [10]. For scalar quantization, no

bins are classified as “other.” In the scalar quantization case,

every bin is populated. Every residue is associated with a

specific set of four centroids (by simple proximity via the

map Q defined in Section 2), each one corresponding to one

of the four torsion angles ð�; �; �; �Þ. In Table 2, we give the

corners of the boxes that define these bins. We could, of

course, easily and automatically add the “other” class if so

desired by simply forcing the torsion angles not to be “too

far” from the center of the bin. This can be quantified for

example by the standard deviation of each bin.
The scalar quantization method was used to automati-

cally cluster the four identifier torsion angles. The funda-

mental difference between the binning method in [10] and

the scalar quantization method is that bin boundaries were

established manually by inspection of frequency histo-

grams, while the clusters borders were automatically

computed via a distortion minimization criterion. The four

identified torsion angles of all the residues in RR0033 were

classified by scalar quantization, with the three clusters in �

described above.
In summary, the results of automatic classification by

scalar quantization are very similar to the manual binning

method of [10], except for an extra refinement (obtained

automatically) in the � coordinate. As mentioned above, it

can be shown that any increase in the number of clusters in

the four coordinates will not reduce the distortion D.

Indeed, it seems that any attempt to increase the refinement

will only worsen the results.

4 VECTOR QUANTIZATION: AUTOMATIC AND

SIMULTANEOUS BINNING OF MULTIPLE ANGLES

Important (biochemical) information in the torsion angles is
lost in scalar quantization or any other analysis that considers
single angles at a time. This loss occurs because each angle is
considered in separation from the others. Scalar clustering is a
one-dimensional projection that can merge clusters that are
distinct in projections of higher dimension. For a schematic
illustration of this problem, see Fig. 4.

VQ analysis addresses this problem.10 For an illustration
of the methodology, consider VQ analysis of two angles
(with k ¼ 2).11 For example, requesting N ¼ 6 clusters for
the pair ð�; �Þ, we obtain the centers

C ¼fð69:1; 284:2Þ; ð291:0; 165:6Þ; ð287:4; 79:0Þ;
ð167:6; 284:6Þ; ð287:7; 280:0Þ; ð105:3; 109:8Þg:

The � component of the automatically detected centers is as
in the case of scalar quantization, while the � component
includes terms that both appear when we request two and
three bins for � in the scalar case. That is, VQ for k ¼ 2 finds
additional relevant clusters in � when considered as a
vector in conjunction with �. In Fig. 5, the torsion angles are
plotted (blue dots) together with the cluster centers (red
stars). Repeating this exercise for N ¼ 9 clusters for ð�; �Þ,
gives the centers

C ¼fð292:2; 68:3Þ; ð68:3; 283:8Þ; ð176:5; 122:6Þ;
ð157:5; 284:9Þ; ð66:7; 102:4Þ; ð213:1; 287:0Þ;
ð293:4; 284:0Þ; ð295:3; 188:0Þ; ð293:5; 132:0Þg:

Fig. 6 contains plots of the torsion angles (blue dots)
together with the cluster centers (red stars), showing that,
while the main cluster centers are closely located to those
when only six centers were considered, the three additional
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TABLE 2
Enumeration of the Bins Obtained by

Scalar Quantization and Their Boundaries

Fig. 4. Qualitative example showing the importance of vectorial
investigation of torsion angles. In this example, the conformations
space is projected onto two torsional angles,  1 and  2. There are
clearly two population clusters, 1 and 2. The individual torsion angle
histograms will give only one peak with a negligible tail and the two
clusters cannot be identified when the analysis is purely scalar. There is
a need, therefore, for vectorial analysis, as suggested in this work.

10. As mentioned in the introduction, VQ already produces very good
results, as detailed in the rest of this paper, although other clustering
techniques might be able to exploit the RNA structure even further, and this
is the subject of future research, see Section 6.

11. To further demonstrate the importance of the simultaneous study of
torsion angles and to make the figures simpler and since this exercise is, for
the moment, for illustrative purposes only, we exclude the residues of
RR0033 in A-conformation, which constitutes over 60 percent of the RNA.
A-conformation is characterized by the angles ð�; �; �; �Þ each in the modes
corresponding to their respective major peaks.

TABLE 1
Cluster Centers Automatically Computed by Our Technique

Numbers in parentheses are used for cluster identification.



centers split the broad distributions (lower left region,
where one center became two) as well as splitting the very
popular conformations (e.g., additional center at the main �
pick, right of the figure).

It is clear from the illustrations above that high-
dimensional clustering is necessary. All torsion angles
should be considered simultaneously. The framework
described in Section 2 permits that. Analysis of one
dimension (one torsion angle at a time), four-dimensional
ð�; �; �; �Þ, or the full seven-dimensional torsion angle space
is of equal complexity with automatic VQ methods. Of
course, due to the “curse of dimensionality,” more data is
needed at higher dimensions. However, the work here is
not limited by quantity of data. The dispersion within the
clusters (i.e., the peak shape) might be used to infer energy
potentials and dynamical processes.

The first test of the vector quantization method used four
dimensions (k ¼ 4), the four identifier angles ð�; �; �; �Þ of
RR0033. To cluster these four angles, one must determine the
optimum number of clusters (N). False clusters arise if N is
too large (overpartitioning). Distinct clusters are merged ifN
is too small (underpartitioning). Several metrics are used here
to optimize N . The relationship between the distortion, D,
defined in Section 2, and the number of clustersN is useful for
optimizing N . In addition, the observation of overlapping
clusters indicates overpartitioning. The number of clustersN
(see also Section 4.1 and Section 6) is also task dependent;
analysis at different resolutions should require a different
number of clusters and topics such as RNA dynamics might
need a much more detailed partition than rough classification
studies.

Fig. 7 shows a plot of D as a function of the number of
clusters N . The distortion reaches a “plateau” value for
N � 50, meaning that the improvement is mild, compared to
the initial value, when further increasing N . The oscillations
observed in the graph are due to the convergence of the
optimization algorithm to local and not global minima.12

Vector quantization was performed for N ¼ 40; 50; 60. N ¼
60 gave all the populated bins defined in [10]. All three cases,
however, appear to be overpartitioned. This overpartition-
ing is especially pronounced in the A-conformation

region. Most neighboring clusters in this region are
overlapping. This overlap is not surprising since these
clusters are so highly populated (over 60 percent of this
RNA) that any distortion minimization approach will tend
to invest a lot of resources (i.e., centers) there. This
phenomenon emphasizes the need to impose structural
definitions onto the clustering process, as described below.

The full quantization of the conformation space, based on
all seven torsional angles, was also performed. The algorithm
is fast enough to perform a full quantization of the 2,800
residues of RR0033 to 60 classes in a few seconds. The
distortion D virtually plateaus at about 60 classes; see Fig. 8
(recall once again that oscillations are due to local minima).
N ¼ 60 gives the representation of the most populated 15 bins
from [10] and is in good correspondence to the results of the
four-dimensional quantization. Additional partitioning of
up to N ¼ 100 reveals very sparsely populated new classes,
see Section 6. Here, a “new class” is “far” from previously
found classes. Classes are here considered “close” (or
overlapping) when their centroids are in the same bin (as
derived from the SQ, see Table 2) and “far” otherwise.

4.1 Merging

“Closeness” is the first component of a merging criteria.
Specifically, we require that two clusters with centroids that
reside within the same bins are merged into a unique
cluster, subject to conditions mentioned below.13
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Fig. 6. Torsion angles for the pair ð�; �Þ (blue dots) together with the nine

cluster centers (red stars).

Fig. 7. Error as a function of the number of clusters for the vector

ð�; �; �; �Þ.

12. We have experimentally observed that the cluster centers do not
significantly vary for different runs of the algorithm, being relatively robust
to local minima artifacts. From the validation results reported below, we
also observe that the limitation to finding local minima has not affected the
overall results. The results could be further improved, for example, running
VQ several times with different initial conditions and combining the results.

13. Another possible merging criteria is to merge clusters as long as they
do not change the total distortion D above a given threshold.

Fig. 5. Torsion angles for the pair ð�; �Þ (blue dots) together with the six

cluster centers (red stars).



Note that binning, whether by observation, as in [10], or
automatically done via SQ, as described above, gives a
partition of the torsion angles space into multidimensional
boxes. There is no a priori reason to believe that the basin of
attraction of the specific energy minimum that defines a
native conformer will have such a shape. Using vector
quantization with merging can shift and change the basin
and its boundaries. An additional advantage of this method
is that, as mentioned before, vector quantization naturally
partitions the entire torsion space.

In order to possibly discover new motifs, we added some
natural conditions to the merging in the full dimensional
case. First, we merge two clusters only if the angles ð	; 
; �Þ
have the coordinates of their centroids within the same
peak. These peaks may be quite small and very difficult to
observe via simple histogramming.

The second additional merging condition is a structural
one: We define a “tagged cluster” as a cluster that
corresponds to a well-established conformation such as
A-helical or tetraloop RNA. Tagged clusters are protected
and are not merged with other clusters. Although there are
relatively few of these clusters, they represent a large
fraction of the RNA. Approximately 60 percent of globular
RNA is found in the A-conformation.

The results of the proposed algorithm (VQ followed by
merging of nontagged clusters or modified vector quantiza-
tion) are presented in Table 3. Each row contains the ASCII
code of the bin that matches the coding method of [10]14

(see Table 12 in the Appendix) and the enumeration of the
peaks (numbers as obtained from the scalar quantization).

In addition to being automatic and capable of handling
all the torsion angles at once, a clear advantage of the
VQ method as compared to manual binning is the smaller
numbers of classes that are needed to classify the structure.
Vectorial binning is based on 26 clusters versus 38 bins in
the usual binning method [10]. The main reason for this
reduction in the number of classes is that the clustering
algorithm does not recognize the “transition states” bins or
the bins classified as “other” from [10]. These are regions of

conformation states that are very sparsely populated and
which probably include energy bottlenecks between the low
energy conformations. The result is that conformations that
may be measurement error are included in the structural
analysis [20].

5 AUTOMATICALLY FINDING MOTIFS: VALIDATION

Most motifs that are already known have highly conserved
three-dimensional structures. Finding motifs with the
modified vector quantization method proposed above can
be used as a validity measure and this is the goal of the
present section. In particular, we compare the sites of
different known motifs with search algorithms based on:
1) manual binning following [10], 2) 4D vector quantization
with the angles ð�; �; �; �Þ, and 3) 7D vector quantization
with the whole torsion angles set.

5.1 Tetraloops

The tetraloop motif [1], [13], [18], [32] was used to compare
various methods here to each other and to our previous
visual binning method [10]. A tetraloop is a four residue
element that caps an A-helix [1], [13], [18], [32]. The most
abundant tetraloop sequence is GNRA, where N is the
U-turn residue. Consensus molecular interactions of GNRA
tetraloops are 1) “G” forms a non-Watson/Crick hydrogen
bond with “A,” 2) the N1 of “G” forms a hydrogen bond
with the O2P of “A,” and 3) the 2’ OH of “G” forms a
hydrogen bond with the N7 of R. This motif has been found
to be thermodynamically stable and ubiquitous in various
RNAs. The high frequency of occurrence and conservation
of molecular interactions makes this motif a very useful test
case for our algorithms.

In previous work, we describe 25 tetraloops in RR0033
(23s rRNA), detected by visual binning. There we show that
global and local RMS deviations of atomic positions of the
tetraloops are related in a reasonable way to torsion angle
deviations. RMSD space and torsional space have similar
information content. Twenty-four of 25 tetraloops there are
associated with the ASCII code aaoa in [10], while a single
tetraloop is given by aaoe (see also Table 3). A minor
adjustment of the visual binning structure converts the
single outlier to the consensus, giving all 25 of the observed
tetraloops as aaoa, shown in Table 4.

Our torsional definition (aaoa) is offset by one residue
relative to the sequence-based definition (GNRA) such that
the o of aaoa is the U-turn residue. The rationale for the
offset of operational: In torsion space, aaoa appears to be a
more accurate definition than aoaa. The word aaoa is much
more frequent than the word aoaa. Note that “a” indicates
the A-helical conformation and “o” indicates that the �
torsional angle is rotated from g to transorientation to give
the U-turn. Although our method searches in torsion space,
not molecular interaction space, the consensus molecular
interactions are well-conserved in the tetraloops of Table 4.

In Table 4, the first column gives the starting residue
number, exactly as in our previous work [10]. The second
column gives the sequence (in the aaoa frame, not in the
GNRA). The conventional definition is provided in the third
column. The fourth column gives the binning “word,” after
adjustment of the visual binning structure, so that all
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Fig. 8. Error as a function of the number of clusters for the vector with all

seven torsion angles.

14. In this code, the most popular residues are given the most popular
letter of the alphabet. Classifying and labeling every residue with an ASCII
letter allows one to used well-developed methods of searching and analysis
of text to analyze RNA conformation. Reading text, establishing words and
their relationships can allow unique insights into the three-dimensional
structure that is encoded. See the Appendix for additional details.



25 tetraloops, rather than 24 out of 25, are given by aaoa.

The fifth and sixth columns show the new automatic results

for the four and seven-dimensional vector quantization,

respectively. For tetraloops, there is complete agreement

between the visual binning and the SQ results. All of the

SQ tetraloops are similarly classified as such by visual

binning, with no false negative and no false positives. These

results are an indication of the utility of the automatic

clustering techniques.
In fact, we can find here a very good agreement among

all of the methods. The table gives perfect agreement in 25

out of 26 cases with [10] (that is, all the methods agree) with
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TABLE 3
Results of the Modified VQ on Individual Residues, See Text for Details

TABLE 4
Results for the Tetraloop



just one false positive (the residue beginning at 149). This
false positive replaces an e by an a and an a by an o. In both
cases, the difference is in a single torsion angle and a
different side of the cluster border was “selected.” This is an
expected and tolerable error when working with high-
dimensional data for “borderline” angles (recall that, as
mentioned in the introduction and further discussed in
Section 6, the proposed torsion clustering should be one
component of the classification approach).

5.2 E-Motif

A second motif with conserved conformation is the E-Loop
motif [16]. An E-loop is a double helical region with a
G bulge and characteristic A-G, A-A, and trans-Hoogsteen
U-A pairs. Visual binning identifies six E-Loops in RR0033
(23S rRNA), each with a þ (with the G bulge) and � strand.
In fact, there are two rotamers of the þ strand that give the
same global geometry. The � strand has a unique
conformation. It has been proposed that this double-
stranded motif has affinity for Mg2þ ions and arginine
[16]. E-Loops are described as “looped with a dinucleotide
platform in a triplet” by the SCOR library.

For E-Loops, there is full agreement between visual
binning and 7D VQ (Table 5). A 4D VQ gives a single false
positive. Inspection of conformation and interactions of the
segment initiating at residue 1,069, identified by 4D VQ,
reveals it is not an E-Loop.

The refinement of the � coordinate into three distinct
regions is of utility here. The second residue of the E-loop þ
strand is in a conformation with � in the first peak (around
60o). A 7D VQ reveals that the fifth residue of the þ strands
(Table 5), which is invariably a U, is in the “A” cluster (as
defined in the table) with a 	 coordinate centroid that
deviates from (180o) (“a” cluster) to 140o (“A” cluster).

We did not merge this cluster with the “a” cluster. We
also observe that “h” in the four-dimensional quantization
and the visual binning is replaced by “z” in the seven-
dimensional VQ.

The results for the � strand are shown in Table 6. This
strand has an A-form stack with a kink at the second
residue. Here, we can find full agreement between visual
binning results and 4D VQ. The 7D VQ gives a bin “U”
instead of “u.” The difference between the two in Table 6 is
in the nonidentifier angle 	 ¼ 94o that is outside the main
envelope. Here, we have an example where a nonidentifier
torsional angle gives extra information which is needed for
correct definition of the conformation.

5.3 Kink-Turn Motif

This motif described in [19] also has the double-stranded
structure. The kink-turn consists of a bulging þ strand,
which has a conserved structure, and a � strand, which has
a more flexible structure. We will focus our attention here
on the þ strand only.

Referring to Table 7, we see some inconsistencies
between the structures detected by the different methods.
Two possible places for the ambiguity in the structure from
the binning method are in the second place letter “e” and
the fifth with the letter “r.” In both of these places, the
� angle is out of the main peak, but the binning is not finely
tuned enough to recognize the precise place; see also Table 2
and Table 3. With seven-dimensional vector quantization, it
is obvious that one can find � in a second peak, which
emphasizes an advantage of using the full dimensional
quantization technique.

5.4 Hyper-Twist Motif

The hyper-twist is another motif that is based on the double
helix structure. Here, the double strand is twisted around a
purine-purine mismatch. The mismatch is usually a G-A
pair. This motif typically has a symmetric structure. There is
a G-A pair and an A-G pair. In Table 8, we included both
the þ and the � strand.

The entries marked with a � have a � strand with
conformation “e” instead of “r.” There are some conforma-
tions which include a bulge. One of them coalesces with a
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TABLE 5
Results for the E-Motif þ Strand

TABLE 6
Results for E-Motif � Strand



kink-turn motif. It was found that all of the mismatch

conformations that were marked by “r” belong to one specific

cluster. We used this to unmerge this cluster from the other

clusters that were merged with it before; see Table 3.

5.5 Mismatched GA-Motif

All of the above motifs are characterized by a double helix

structure which may be twisted or bulged. The deformation

is a result of a base pair mismatch. This is a secondary

structural characteristic. We can find also a unique

conformation in almost all of the above-mentioned cases.

After a base pair mismatch, the residue acquires the

conformation marked by “A.” This conformation is a single

cluster. The identifier torsional angles of this conformation

have the same values as that of the A-form helix. The only

difference is that the 	 value is shifted to the shoulder of the

main peak in the histogram of 	. See also [28] for related

results.
The �; 	 plot of this cluster is given in Fig. 9. The binning

method (even with scalar quantization) as well as 4D VQ

cannot recognize this cluster, while the full seven-dimen-

sional VQ can. A similar cluster was found with the electron

density technique in [28]. This conformation appears in the

following locations:

1. Hyper-Twist: 25, 818, 1,590, 2,504.
2. Kink-Turn: 48, 98, 265, 1,152.
3. E-motif: 176, 214, 359,1,073, 1,371, 2,693.

There is a generalization of the hyper-twist, that is a

mismatched double strand that includes the “A” conforma-

tion in:

721 2 ð716� 726; 702� 712Þ;
1; 032 2 ð1; 031� 1; 041; 929� 939Þ;
1; 742 2 ð1; 733� 1; 744; 2; 035� 2; 046Þ;
1; 528 2 ð1; 527� 1; 534; 1; 657� 1; 664Þ;
2; 827 2 ð2; 826� 2; 830; 2; 910� 2; 914Þ;
2; 883 2 ð2; 880� 2; 889; 2; 868� 2; 877Þ:

The conformation of this double strand is less conserved
than the hypertwist.

Other “bulge motifs” with pair mismatches include
442; 465; 489; 593; 2; 244; 2; 427; 2; 259; 2; 906, as well as the
short double helix with internal loop, 2; 427. Some more
complicated mismatch structures are

382; 489; 645; 1; 528; 1; 891; 1; 973; 2; 485; 2; 675; 2; 817; 2; 904:
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TABLE 7
Results for the Kink-Turn Motif þ Strand

TABLE 8
Hyper-Twist Motif þ and � Strands

The SCOR description of these sites is mostly of “stacked paired non-Watson/Crick double strand” or “cross strand.” At �, the structure is considered
to be a kink-turn motif. For the 7D VQ, there is a clear preference for the “r” conformation to be in one of the complexes (� ¼ 130).

Fig. 9. The �; 	 torsional angles of the “A” cluster.



The conformation “A” appears in three places where it

cannot be associated with mismatched structures.

5.6 Helix Initiation Knee

The helix initiation knee is a motif that has a bend at the

beginning of a helix [28]. As its name implies, such a motif

is associated with a “knee” between two adjacent helices.

This occurs, for example, in the case of the “knee” between

the T stem and the acceptor stem. We defined this motif to

have the binning sequence “taaa”; see Table 9. We found

this form to repeat 19 times in RR0033. Table 9 summarizes

the search results for this motif.
From the 21 structures that were found to be in the

desired conformation (see Table 9), only six were not

initiating a double helix and, also within these six cases,

there are a large number of tertiary interactions with other

parts of the LSU. The differences among the methods are

minimal and are mostly confined to the case where t (1111)

is changed with the transition state p in the binning method

(4,111) (which includes the “other” region absent in the

VQ method).

Another type of helix initiation motif has a typical

conformation of “vaaa” in one of the strands. The “va”

conformation was recognized in [28]. There were 13 such

structures and they are summarized in Table 10.
There is full agreement between the 4D and the 7D VQs.

Only seven of the above examples have the same binning

structure. The three-double helix is a structure where the first

residue in the “v” conformation is unpaired. It seems that, for

this motif, the binning definition of the “v” conformation

gives a more uniform motif. This will be addressed in

more detail in Section 6 below.

6 DISCUSSION

RNA conformational motifs were characterized here with

statistical techniques from classical signal processing. These

automatic procedures do not use visual inspection or

filtering. The overriding goal is to establish fast and easily

applied yet rigorous methods for analysis of RNA con-

formation. The simplest method used here, scalar quantiza-

tion, treats each dimension in isolation of the others. SQ
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TABLE 9
Results for Double Helix Initiator Element

TABLE 10
Results for Double Helix Initiator “v” Element



successfully resolves the torsion angle � into the three
distinct clusters (three rotamers) predicted by the potential
energy surface. This resolution of � into three was not
accomplished in [10] and was found by visual inspection in
[20] only after application of quality filters. This is achieved
following well-defined criteria, as well as the automatic
analysis of multiple angles at once. As we have noted, we
do not claim that clustering analysis in torsion angle space
is the only or even best method for finding motifs, but
simply a logical one which is very easy to use and can form
part of more comprehensive criteria.

With VQ, populated clusters of RNA conformation are
determined in simultaneous analysis of any dimensionality,
up to the full seven-dimensional torsional space. We believe
this work represents the first analysis of RNA torsional
space at greater than three simultaneous dimensions (i.e., of
more than three torsion angles). Although VQ was used in
this work as the basis for our automatic analysis, other high-
dimensional clustering techniques can be used as well.
Here, four-dimensional VQ was applied first to the four
angles ð�; �; �; �Þ that have previously been termed “identi-
fier angles” [10] because they appear to completely specify
fundamental RNA conformations. The remaining three
dimensions are considered to be dependent on the four
identifier angles, although they are important for conforma-
tions search, see below. Based on the distortion measure
from VQ, the number of four-dimensional clusters was
experimentally found by 4D VQ to be about 60. This result
suggests that there are about 60 fundamentally distinct
nucleotide conformational states within globular RNA,
although the subject of finding the exact number of
conformational states (which can be resolution and task
dependent) needs further investigation. The 4D VQ
identified each of the populated bins reported in [10],
which were obtained via manual classification. Agreement
with SCOR was found as well.

We then added a merging stage to the VQ method,
which is based both on cluster centroid proximity and on
structural constraints, thereby adapting the generic VQ
technique to the study of RNA torsion angles. For example,
all clusters that meet the definition of A-helical RNA were
merged into a single cluster. This initial overpopulation of
A-helical RNA clusters was expected since, due to their
popularity, VQ allocates to them a large number of
resources (centroids) in order to minimize the distortion.15

We then used this modified VQ on the full set of seven
torsion angles defined by a single nucleic acid residue. This
study of the full seven-dimensional space led to new
conformations that were not present at the one or four-
dimensional studies. We validated the method by compar-
ing it with known structural motifs, as well as the SCOR
classification. The minor mismatches could be a result of a
too coarse clustering (different motifs merged into a single
cluster). We tested adding clusters (up to 100) and found
small changes that are enough to fix these discrepancies
(while requiring additional merging to eliminate the not-
novel clusters).

It is important to note that neither SCOR nor our results
are complete. The “true” definition of a given motif should
involve the combination of a rotameric state (as is argued in
this paper) and sequence information (which is the basis of
SCOR). We believe that one of the contributions of our
research is to start to develop a rotameric contribution to
this definition.

We found a conformational signature for the existence of
a mismatch motif, an umbrella motif that includes the
bulging or twisted double-stranded cases. We found this
conformation only when we used the modified 7D VQ,
showing the importance of working with the whole
conformational space and, thereby, the need for a formal
analysis technique, such as the one described here, that go
beyond ad hoc visualization-based approaches.

In the next step (in progress), we will seek the relation-
ship between neighboring clusters using the method of
mutual information. As has been done for secondary
structures in protein research, e.g., [6], it is important to
study the dispersion within clusters. It seems likely that
information on shapes of potential energy surfaces and
RNA dynamics is contained within the cluster shape.
Finally, following work on proteins [6], we can also perform
principal component analysis (PCA) on various clusters.

To conclude, in this paper, we have seen how some
standard techniques from statistical signal processing are
useful for the analysis of RNA structure. These techniques
cover from the automatic finding of torsion angles clusters
and their grouping into motifs, to the analysis of motif
populations. These techniques can be augmented with
novel clustering approaches being developed by the
learning and signal processing communities and investigat-
ing those, together with the search for new motifs, is the
subject of some of our current efforts.

APPENDIX

BACKGROUND ON THE BINNING METHOD

In this appendix, for the convenience of the reader, we
briefly review the main results reported in [10]. We
introduce here some minor modifications in order just to
elucidate the main ideas. We finally repeat some of the key
tables from [10] for easy reference on the part of the reader.

Binning as formulated in [10] is a histogram-based
method for describing RNA conformation and for identify-
ing RNA tertiary structural motifs. The conformation of
each bond can be described by a small number of discrete
integers. Each residue can be assigned to a distinct
configuration class. Further, some of the torsion angles are
dependent or highly restrained. In summary, one can
reduce the full multidimensional torsion angle space to a
set of 38 configuration classes. An ASCII code can be
assigned to each configuration class. Thus, the three-
dimensional description of conformation is reduced to a
single dimension.

More precisely, each torsion angle of a given residue is
allocated to the appropriate bin. By definition, torsion
angles with single-peak distributions cannot be readily
separated into distinct bins because, essentially, all the
angles are contained under a single envelope. Because of
this, the angles 	, 
, and � are assumed not to contribute
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15. Of course, for tasks different to the one in this paper, such a merging
might not be needed and considering the different clusters can lead to a
more detailed analysis, for example, of the A-helical variability in the search
for “microconformations.”



information to the conformational description and are
ignored; see [10]. Because of their multipeaked nature, the
remaining four torsion angles and P allow a straightforward
separation into distinct configuration classes. However, �
and P are correlated, both by geometric definition and from
analysis of the HM 23S rRNA data. Thus, to avoid
redundancy, we eliminate P and consider only four torsion
angles, �, �, �, and �. The reduction in parameters led us to
a four digit structural representation of the conformation of
a given residue. Each residue is assigned a sequence of four
integers, n�; n�; n�; n� , where each digit denotes the envel-
ope to which a torsion angle belongs.

Binning has several important advantages:

1. It allows one to exploit the large and sophisticated
pattern recognition capabilities already developed
for one-dimensional databases.

2. It allows one to combine sequence and conforma-
tional information in the same one-dimensional
representation, for example, by interleaving the
ASCII binning characters with sequence characters.

3. It allows one to represent conformational informa-
tion along with base-pairing, tertiary interaction,
etc., in simple two-dimensional representations.

4. It can be readily tuned to a given organism, class of
RNA, etc.

5. It is relatively easy to implement, and may be
automated in the manner indicated in this paper.

The results of the method in [10] are summarized in
Table 11 and Table 12.
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