VII Carbohydrates

Carbohydrates: A polyhydroxy-aldehyde or ketone; the polymers and derivatives of such compounds

General formula:

Examples:

7.1 Nomenclature

Monosaccharide: A single carbohydrate unit

Oligosaccharide: A polymer of two to ten saccharide units (sometimes also called disaccharides (for two units), trisaccharide (for three units) etc.)

Polysaccharide: A polymer with more than ten saccharide units

- **Aldose**: A polyhydroxy aldehyde
- **Ketose**: A polyhydroxy ketone

Examples:
7.2 Monosaccharides

7.2.1 Aldoses

• Most carbohydrates have one or more chiral center(s)

Example:

- Remember Fischer projection

D-Sugar: the most common carbohydrate; D-refers to the right hand orientation of the -OH group on the chiral carbon FARTHEST from the carbonyl group

L-Sugar: L-refers to the left hand orientation of the -OH group on the chiral carbon FARTHEST from the carbonyl group

Examples:

Epimer: One of two diastereomers that differ in the orientation of groups at only one carbon

Examples:
• Most common naturally occurring monosaccharides are derived from D-glyceraldehyde
Hand out 1 (or page 303 in the book) illustrate all D-Aldoses (aldotroses, pentoses, hexoses)

Example of some important D-Aldoses:

7.2.2 Ketoses
• Ketoses do not have a terminal aldehyde group but a ketone on the C2.
• Ketoses can also be categorized into D and L ketoses
• Hand out 2 (or page 305 in the book) illustrate some D-ketoses

Examples:
• Remember functional isomers: D-Glucose and D-Fructose are functional isomers

7.2.3 Cyclic Structures

• We have drawn all carbohydrates as a chain
• However most carbohydrates are not linear but cyclic
• Formation of a hemiacetal or hemiketal results in a cyclic structure

Hemiacetal: The alcohol-ether product of the reaction between an aldehyde and one mole of an alcohol

Acetal: The diether product of the reaction between an aldehyde and two moles of alcohol

Example:
Hemiketal: The alcohol-ether product of the reaction between a ketone and one mole of alcohol

Ketal: The diether product of the reaction between ketone and two moles of alcohol

How can we translate this into a ring formation?

- A new chiral center has been formed

Anomer: One of two optical isomers formed at the new chiral carbon produced when an aldehyde forms a hemiacetal or a ketone forms a ketal

- **α-Anomer:** The cyclic hemiacetal that has the -OH group on the new chiral carbon below the ring; on the right in a Fischer projection

- **β-Anomer:** The cyclic hemiacetal that has the -OH group on the new chiral carbon above the ring; on the left in a Fischer projection

Examples:
Haworth Structures (Projection): Two dimensional five- or six-membered ring representation of the cyclic form of a monosaccharide; -OH groups that appear on the right in a Fischer projection are drawn down (below the plane of the ring) in a Haworth structure and those -OH groups on the left in a Fischer projection are drawn up (above the plane of the ring)

Examples:

- Sometimes an abbreviation is used:

 Furanose: Five membered ring form of a monosaccharide
 Pyranose: Six membered ring form of a monosaccharide

These names come from Furan and Pyran:
Conformational Structure: Relating to carbohydrates, this is the chair form of the cyclic hemiacetal or hemiketal

Examples:

7.3 Reactions of Monosaccharides

Monosaccharides contain a number of functional groups

⇒ These functional group can undergo reactions

A) Oxidation of Sugars

• Sugars are easily oxidized that means they are good reducing agents

Reducing Sugar: Carbohydrate that has one or more anomeric carbons available for oxidation by a mild oxidizing agent
Examples:

Tautomerization of Ketoses:

- **onic Acid**: A carbohydrate derivative wherein the aldehyde functionality has been oxidized to a carboxylic acid
- **uronic Acid**: A carbohydrate derivative wherein the last, primary alcohol has been oxidized to a carboxylic acid

Nonreducing Sugar: A carbohydrate with all of its anomeric carbons bonded to other groups, unavailable for opening to an aldehyde or ketone carbonyl
B) Reduction of Sugars

- Sugars can be reduced. The aldehyde or ketone group can be reduced to the corresponding alcohol

Examples:

7.4 Disaccharides and Polysaccharides

7.4.1 The Glycoside Bond

How do you connect several monosaccharides together?

Acetal Formation:

Glycoside Bond: Acetal or ketal formed from the reaction of a cyclic monosaccharide with another monosaccharide
7.4.2 Disaccharides

Disaccharides: Two monosaccharide units linked by a glycosidic bond

A) Lactose (β-D-Galactose and α-D-Glucose)

• Found only in milk (lac Latin for milk)
B) Sucrose (Table Sugar) (α-D-Glucose and β-D-Fructose)

Levulose: Another name for fructose

Dextrose: Another name for glucose

Invert Sugar: A mixture of fructose and glucose produced by the breakdown of sucrose

C) Celllobiose (β-D-Glucose and β-D-Glucose) linked by a 1,4 glycosidic bond
D) Maltose (α-D-Glucose and β-D-Glucose) linked by a 1,4 glycosidic bond
• Produced by the hydrolysis of starch using the enzyme amylase

7.4.3 Polysaccharides

A) Starch
• Plants store glucose as starch based on two components: amylose and amylopectin

Amylose: A component of starch; linear polymer of glucose units connected by a α-1,4 glycosidic bond

Amylopectin: A component of starch; branched polymer of glucose units connected with α-1,4 glycosidic bonds in its linear chains with α-1,6 branching in intervals of about 25 units

Animals (that means us) have enzymes that cleave the glycosidic bonds and can digest starch
Starch:

B) Animals store glucose as **glycogen**

Glycogen: Branched polymer of glucose units connected with α-1,4 glycosidic bonds in its linear chains with α-1,6 branching in intervals of 8-10 units

C) Cellulose

Cellulose: A linear polymer of glucose units linked by α-1,4 glycosidic bonds
Summary of Chapter 7:

⇒ Carbohydrates
 → Nomenclature
 → Aldoses
 → Ketoses
⇒ Monosaccharides
 → Fischer Projection
 → D- and L Sugars
 → Cyclic Structures and Representations
⇒ Reactions of Monosaccharides
 → Oxidations
 → Reductions
⇒ Glycosidic Bonds
⇒ Disaccharides
 → Lactose
 → Sucrose
 → Maltose
 → Cellobiose
⇒ Polysaccharides
 → Starch
 → Cellulose
 → Glycogen