Catalysts are substances that increase the rate of reaction but are not consumed in the reaction.

Unsaturated hydrocarbons easily "add across multiple bonds."

\[\text{\ce{CH=CH}} + \text{Cl}_2 \rightarrow \text{H-\ce{C-\ce{C=CH}}} \]

Even this simple reaction probably doesn't occur by a concerted mechanism.
SN = 3
trigonal

\[x = 2 \]
\[y = 3 \]
\[3x + y = 5 \]
\[x - y = -1 \]

\[5 \text{Cl} - \text{Cl} \]
polarized
Saturated HCl's

Undergo Substitution reactions

\[C_2H_6 + \overset{\text{H}}{\text{C}} - \overset{\text{Cl}}{\text{C}} - \overset{\text{H}}{\text{H}} + \overset{\text{H}}{\text{C}} \overset{\text{Cl}}{\text{Cl}} \]

Primary salt

[2b]
$\text{CH}_2 \xrightleftharpoons{} \ 2 \text{Cl}_2$

$\text{CH}_3 \text{CH}_3 + \text{Cl} \rightarrow \text{HCl} + \text{CH}_3 \text{CH}_2 \text{Cl}$

$\text{H}_3\text{C} \cdot \text{CH}_2 \cdot + \text{Cl} \rightarrow \text{H}_3\text{C} \text{CH}_2 \text{Cl}$

$\text{H}_3\text{C} \text{CH}_2 \text{Cl} + \text{Cl} \rightarrow \text{CH}_2 \text{CH}_2 \text{CH}_2 \text{Cl}$

$\text{H}_3\text{C} \cdot \text{CH}_2 \cdot + \text{CH}_3 \text{CH}_2 \rightarrow \text{CH}_3 \text{CH}_2 \text{CH}_2 \text{CH}_3$

chain mechanism
Aromatic Hydrocarbons

C_6H_6

3 bonds
($S +$ two p^5)

delocalized

1st

Resonance
Reactions with aromatic hydrocarbons occur by a different mechanism.

Aromatic hydrocarbons contain benzene or substituted benzene.

Benzene is C_6H_6.

Aromatics don't add across the double bonds but undergo substitution reaction.
Benzene has extra stability because of its delocalized \(\pi \) bond.

It undergoes substitution reactions rather than addition reactions.

\[
\text{C}_6\text{H}_6 + \text{Cl}_2 \rightarrow \text{C}_6\text{H}_5\text{Cl} + \text{HCl}
\]

The \(\text{FeCl}_3 \) is a catalyst.

Mechanism:

1. \(\text{Cl}_2 + \text{FeCl}_3 \rightarrow \text{Cl}^+ \cdots \text{FeCl}_4^- \)

2. \(\text{C}_6\text{H}_6 + \text{Cl}^+ \rightarrow \text{C}_6\text{H}_5\text{Cl} \)

3. \(\text{C}_6\text{H}_5\text{Cl} + \text{FeCl}_4^- \rightarrow \text{FeCl}_3 + \text{HCl} \)
Hydrogen is less reactive than halogens and the addition of H₂ across a double bond also requires catalyst.

\[
\text{H}_2 + \text{C} = \text{C} + \text{H}_2 \xrightarrow{\text{Ni}} \text{A} = \text{C} - \text{C} - \text{H}
\]

Hydrogenation is important in converting oils to solid shortening.

Fatty acids (derived from fats) are long-chain carboxylic acids.

\[
\text{CH}_3 (\text{CH}_2)_{18} \text{CH}_2 \text{COH} \quad \text{Saturated}
\]

\[
\text{CH}_3 \text{C} (\text{CH}_2)_{18} \text{CH}_2 \text{COH} \quad \text{Unsaturated}
\]

\[
\text{CH}_3 \text{C} = \text{C} - \text{CH}_2 (\text{CH}_2)_{18} \text{COH}
\]
Even exothermic reactions often require an initial input of energy before they can get started.

Reaction Coordinate: plot of energy change as reactants become products.

Catalysts provide a lower energy path between reactant and product.