A hydrocarbon has a density of 1.02 g/L at 745.3 torr and 25.3 °C. The complete combustion of the hydrocarbon produced carbon dioxide gas and water vapor.

\[\text{Molecular formula?} \]

\[pV = nRT \implies \rho m = d \frac{RT}{M} \]

\[(\text{CH})_2 \implies \text{C}_2\text{H}_2 \]

The product gases exerted a pressure of 8.75 atm when confined in a 0.50 L container at 125 °C.

\[\frac{p_{\text{tot}} V}{n_{\text{tot}} RT} = \frac{n_{\text{tot}}}{N_{\text{mol}}} \times \frac{0.08206 \text{ L atm}}{\text{mol K}} \times 398 \text{ K} = 0.133 \text{ mol} \]

When the product gases were cooled to 0.0 °C, the pressure fell to 4.00 atm (volume still 0.50 L).

\[\frac{p_{\text{CO}_2} V}{n_{\text{CO}_2} RT} = \frac{n_{\text{CO}_2}}{N_{\text{mol}}} \times \frac{0.08206 \text{ L atm}}{\text{mol K}} \times 273.2 \text{ K} \]

\[n_{\text{CO}_2} = 0.0892 \text{ mol} \]
\[0.133 \text{ mol CO}_2 + \text{H}_2\text{O} \]
\[- 0.0892 \text{ mol CO}_2 \]
\[= 0.0438 \text{ mol H}_2\text{O} \]

\[0.0892 \text{ mol CO}_2 \Rightarrow 0.0892 \text{ mol C} \]

\[0.0438 \text{ mol H}_2\text{O} \Rightarrow 0.0876 \text{ mol H} \]

\[\text{CH empirical formula} \]

\[\text{formula mass} \quad 13.0 \text{ g/mol} \]

\[\text{mol "formula unit"} \]
\[P = nRT \]

\[P = 745.3 \text{ torr} \]
\[T = 25.3 \, \text{°C} \]
\[d = 1.02 \text{ g} \]
\[\frac{1}{2} \]

\[\frac{745.3 \text{ torr}}{1 \text{ bar}} \left(\frac{1 \text{ atm}}{760 \text{ torr}} \right) (1 \text{ L}) = n \left(\frac{0.08206 \text{ L atm}}{\text{mol K}} \right) (298.15 \text{ K}) \]

\[n = 0.0400 \text{ mol HCl} \]

\[M = \frac{1.02 \text{ g HCl}}{0.0400 \text{ mol HCl}} = 25.5 \text{ g/mol} \]

\[\text{HCl = original hydrocarbon sample} \]

\[\frac{26 \text{ g}}{1 \text{ mol C-H}} \times \frac{1 \text{ mol C-H}}{13 \text{ g}} = \frac{2 \text{ mol C-H}}{1 \text{ mol C-H}} \]
How much of the error in a gas law calculation results from the non-ideality of real gases?

Molar Volume at STP

Ideal 22.414 L

He 22.434 L

CO₂ 22.260 L

NH₃ 22.079 L

\[
\frac{22.414 - 22.079}{22.414} = 0.015
\]

Reasons for deviations:

1. Particles of real gas are very small but they do have some volume.

 \[V_{\text{real gas}} > V_{\text{ideal}} \]

2. Particles of real gas do have some attraction for one another.

 \[V_{\text{real}} < V_{\text{ideal gas}} \]
He, He molecule volume dominates
(no attraction between He, He or Ne, He)

At "high" temp... low ?

attraction dominate
Compressibility Factor \((Z = PV/nRT) \)

Plot \(Z \) versus \(P \)

At low pressures, attractions are important.
At high pressures, molecule size is more important.
At sufficiently high pressures, all particles will begin to repel one another.
Critical Data

Critical Temperature (T_c): highest temperature at which a gas can be liquefied

Critical Pressure (P_c): pressure that must be applied to liquefy the gas at its critical temperature

For water, $T_c = 374 \, ^\circ C$. For hydrogen, $T_c = -271 \, ^\circ C$.

Value of T_c tells us something about the strength of the interactions between particles.
Van der Waals’ forces

Natural gas (methane) is a gas at room temperature and atmospheric pressure.

Gasoline is a liquid at room temperature and atmospheric pressure.

Wax is a solid at room temperature and atmospheric pressure.

Dipole-Dipole (polarity)

\[
\begin{align*}
C_2H_6 & \quad \text{non-polar} \quad \text{bp} = -89 \, ^\circ C \quad \boxed{\text{MW} = 30} \\
H_2S & \quad \text{polar} \quad \text{bp} = -61 \, ^\circ C \quad \boxed{\text{MW} = 34}
\end{align*}
\]
Polarization
original vdW force

δ+ δ-
induced dipole

bigger particles have more chance for their electrons to be moved from spherical distribution
Hydrogen bonding

<table>
<thead>
<tr>
<th>Compound</th>
<th>bp</th>
<th>MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{H}_2\text{O}(\ell)$</td>
<td>100 °C</td>
<td>18</td>
</tr>
<tr>
<td>$\text{H}_2\text{S}(\ell)$</td>
<td>-61 °C</td>
<td>34</td>
</tr>
<tr>
<td>$\text{H}_2\text{Se}(\ell)$</td>
<td>-42 °C</td>
<td>81</td>
</tr>
<tr>
<td>$\text{H}_2\text{Te}(\ell)$</td>
<td>-2 °C</td>
<td>130</td>
</tr>
</tbody>
</table>

Ionic forces

<table>
<thead>
<tr>
<th>Compound</th>
<th>mp</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>800 °C</td>
</tr>
</tbody>
</table>
A sample of a gaseous binary compound of boron and chlorine weighing 2.842 g occupies 0.153 L at STP. This sample is decomposed to give solid boron and gaseous chlorine. At STP, the chlorine gas occupies 0.688 L. Determine the molecular formula of the compound.

\[
\text{Bpd} \quad 0.153 \text{ L} \left(\frac{1 \text{ mol}}{22.4 \text{ L}} \right) = 0.00683 \text{ mol Bpd} \quad \text{at STP}
\]
\[
\text{Cl}_2 \quad 0.688 \text{ L} \left(\frac{1 \text{ mol}}{22.4 \text{ L}} \right) = 0.0307 \text{ mol Cl}_2 = 0.0614 \text{ mol Cl atoms}
\]
\[
2.842 \text{ g Bpd} - 2.1795 \text{ g Cl} = 0.6625 \text{ g B}
\]
\[
0.6625 \text{ g B} \left(\frac{1 \text{ mol B}}{10.81 \text{ g B}} \right) = 0.06129 \text{ mol B}
\]
empirical formula is BCl

\[
\begin{align*}
\text{Bpd} & \quad \frac{2.842 \text{ g}}{0.00683 \text{ mol}} = 4.16 \text{ g Bpd mol}^{-1} \\
4.16 \text{ g Bpd} \left(\frac{1 \text{ mol BCl units}}{46.267 \text{ g BCl units}} \right) & = 0.0899 \text{ mol BCl units}
\end{align*}
\]

Molecular formula \(\text{B}_9 \text{Cl}_{19} \)