Chapter 11
Spontaneous Change and Equilibrium

• 11-1 Enthalpy and Spontaneous Change
• 11-2 Entropy
• 11-3 Absolute Entropies and Chemical Reactions
• 11-4 The Second Law of Thermodynamics
• 11-5 The Gibbs Function
• 11-6 The Gibbs Function and Chemical Reactions
• 11-7 The Gibbs Function and the Equilibrium Constant
• 11-8 The Temperature Dependence of Equilibrium Constants
• This entire Chapter deals with a concept called Entropy and the Gibbs function
• Both are new “state properties”
• Entropy = S which has the units JK\(^{-1}\)mol\(^{-1}\)
• Consider Energy, it is perhaps obvious that processes occur spontaneously to produce a state of lower energy

• But, a chunk of ice at Room Temperature, spontaneously melts, forming a state of higher Energy

• Apparently more than energy is involved in determining the direction of spontaneous change
• This additional factor is the tendency of a system to assume the most random molecular arrangement possible

• Systems become disordered, more random

• Natural processes are favored which result in
 – Decreased Energy (favored)
 – Increased Entropy (favored)

• These two factors can oppose each other. Which one wins out?
• Recall from Chapter 10 lecture notes
• **Third Law of Thermodynamics**
 \[\Delta S = 0 \text{ at } 0^\circ K \]
• At absolute zero the Entropy term contributes nothing to the direction of spontaneous change
• The most stable state has the lowest energy
• A temperature increases, molecular motion increases and the tendency to disorder becomes more important
• At sufficiently high temperatures the Entropy factor becomes large enough to overcome even an unfavorable energy change
• For $\text{H}_2\text{O} \ (s) \rightarrow \text{H}_2\text{O} \ (l)$
• Above T_m, the Entropy is dominant so spontaneous melting takes place
• Below T_m, the energy decrease is dominant so spontaneous freezing takes place
• Temperature is a critical factor
Disorder and Entropy

- **Entropy** is a quantitative measure of the number of microstates available to the molecules in a system.
- **Entropy** is the degree of randomness or disorder in a system.

-
-
-
-

• For phase transitions, at temperature T under *equilibrium conditions*
 – Melting (solid to liquid)
 – Fusion (liquid to solid)
 – Vaporization (liquid to gas)
 – Condensation (gas to liquid)

• Define S° as the absolute molar Entropy, which is the absolute entropy of 1 mol of a substance in standard state

• Appendix D gives standard molar entropy values, S° in units $\text{JK}^{-1}\text{mol}^{-1}$
Entropies of Reaction

- $\Delta S^\circ_r = S^\circ_{\text{products}} - S^\circ_{\text{reactants}}$
- ΔS°_r is the sum of products minus the sum of the reactants
- For a general reaction

 $a \, A + b \, B \rightarrow c \, C + d \, D$
Exercise 11-3

(a) Use Data from Appendix D to calculate ΔS_r° at 298.15 K for the reaction

$$2\text{H}_2\text{S}(g) + 3\text{O}_2(g) \rightarrow 2\text{SO}_2(g) + 2\text{H}_2\text{O}(g)$$

(b) Calculate ΔS° of the system when 26.71 g of $\text{H}_2\text{S}(g)$ reacts with excess $\text{O}_2(g)$ to give $\text{SO}_2(g)$ and $\text{H}_2\text{O}(g)$ and no other products at 298.15K
Exercise 11-3

(a) Use Data from Appendix D to calculate ΔS_r° at 298.15 K for the reaction

$$2\text{H}_2\text{S}(g) + 3\text{O}_2(g) \rightarrow 2\text{SO}_2(g) + 2\text{H}_2\text{O}(g)$$

Solution

Notice that this is minus, which is consistent with 5 to 4 decrease in the amount of gas
Exercise 11-3

2H₂S(g) + 3O₂(g) → 2SO₂(g) + 2H₂O(g)

(b) Calculate ΔS° of the system when 26.71 g of H₂S(g) reacts with excess O₂(g) to give SO₂(g) and H₂O(g) and no other products at 298.15K

Solution:
Chapter 11
Spontaneous Change and Equilibrium

• Second Law of Thermodynamics
In a real spontaneous process the Entropy of the universe (meaning the system plus its surroundings) must increase.

• if $\Delta S_{\text{universe}} = 0$, then everything is in equilibrium
• The 2nd Law of Thermodynamics profoundly affects how we look at nature and processes
Summarize a few Concepts

• 1st Law of Thermodynamics
 – In any process, the total energy of the universe remains unchanged: energy is conserved
 – A process and its reverse are equally allowed
 \[E_{\text{forward}} = - E_{\text{reverse}} \]
 (conservation of energy)

• 2nd Law of Thermodynamics
 – \(S \), the entropy of a universe, increases in only one of the two directions of a reaction
 – Processes that decrease \(\Delta S \) are impossible. Or improbable beyond conception
Gibbs Function

- How are Enthalpy and Entropy related?

- G has several names
 1. Gibbs function
 2. Gibbs free energy
 3. Free Enthalpy

- For the *change* in the Gibbs Energy of system, at constant Temperature and Pressure
<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta S_{\text{univ}} > 0$</td>
<td>Spontaneous</td>
</tr>
<tr>
<td>$\Delta S_{\text{univ}} = 0$</td>
<td>Equilibrium</td>
</tr>
<tr>
<td>$\Delta S_{\text{univ}} < 0$</td>
<td>Non-spontaneous</td>
</tr>
</tbody>
</table>
Typical example using Gibbs Free energy

• Benzene, C₆H₆, boils at 80.1°C. \(\Delta H_{\text{vap}} = 30.8 \text{ kJ} \)
 – a) Calculate \(\Delta S_{\text{vap}} \) for 1 mole of benzene
 – B) at 60°C and pressure = 1 atm does benzene boil?
Typical example using Gibbs Free energy

• Benzene, C₆H₆, boils at 80.1°C.
 \[\Delta H_{\text{vap}} = 30.8 \text{ kJ} \]
 – a) Calculate \(\Delta S_{\text{vap}} \) for 1 mole of benzene

 – B) at 60°C and pressure = 1 atm does benzene boil?
Trouton’s rule

• All most all liquids have about the same ΔS_{vap} molar entropy of vaporization
• Called Trouton’s rule

 $\Delta S_{\text{vap}} = 88 \pm 5 \ \text{JK}^{-1}\text{mol}^{-1}$

• In the last benzene boiling point problem, we calculated 87.2 JK$^{-1}$mol$^{-1}$. This fits Trouton’s rule.
The Gibbs Function and Chemical Reactions

$$\Delta G = \Delta H - T \cdot \Delta S$$

- ΔG_f° is the standard molar Gibbs function of formation
- Because G is a State Property, for a general reaction

a A + b B \rightarrow c C + d D
Example 11-7

• Calculate ΔG° for the following reaction at 298.15K. Use Appendix D for additional information needed.

$$3\text{NO}(g) \rightarrow \text{N}_2\text{O}(g) + \text{NO}_2(g)$$
Effects of Temperature on ΔG°

For temperatures other than 298K or 25°C

$\Delta G = \Delta H - T \cdot \Delta S$

- Typically ΔH and ΔS are *almost* constant over a broad range

$$3\text{NO}(g) \rightarrow \text{N}_2\text{O}(g) + \text{NO}_2(g)$$

- For above reaction, as Temperature increases ΔG becomes more positive, i.e., less negative.
For temperatures other than 298K or 25C

\[\Delta G = \Delta H - T \cdot \Delta S \]
For temperatures other than 298K or 25C
\[\Delta G = \Delta H - T \cdot \Delta S \]
For temperatures other than 298K or 25C

\[\Delta G = \Delta H - T \cdot \Delta S \]

Case A

Case B

Case C

Case D
The Gibbs Function and the Equilibrium Constant

• What about non-standard states, other than 1 atm or a conc. \([X] = 1 \text{ mol/L}\)?

\[aA + bB \rightleftharpoons cD + dD \]
The Reaction Quotient

\[aA + bB \xrightleftharpoons[\text{reverse}]{\text{forward}} cC + dD \]

\[\frac{(P_C)^c(P_D)^d}{(P_A)^a(P_B)^b} = K \]

Note that \(K \) (the Equilibrium Constant) uses \textit{equilibrium partial pressures}.

Note that \(Q \) (the reaction quotient) uses \textit{prevailing partial pressures}, not necessarily at equilibrium.
\[\Delta G = \Delta G^\circ + RT \ln Q \]

Where \(Q \) is the reaction quotient
\[a \text{ A} + b \text{ B} \leftrightarrow c \text{ C} + d \text{ D} \]

- If
 - The amount of products are too high relative to the amounts of reactants present, and the reaction shifts in reverse (to the left) to achieve equilibrium
- If \(Q = K \) equilibrium
- If
 - The amounts of reactants are too high relative to the amounts of products present, and the reaction proceeds in the forward direction (to the right) toward equilibrium

\[
Q = \left(\frac{P_C P_D}{P_A P_B} \right)_{\text{any conditions}}
\]

\[
K = \left(\frac{P_C P_D}{P_A P_B} \right)_{\text{equilibrium}}
\]

compare
At Equilibrium conditions

NOTE: we can now calculate equilibrium constants \((K)\) for reactions from standard \(\Delta G_f\) functions of formation

\[
\Delta G = \Delta G^° + RT \ln Q
\]

- Where \(Q\) is the reaction quotient

\[
a \ A + b \ B \leftrightarrow c \ C + d \ D
\]

 - If \(Q<K\) the rxn shifts towards the product side
 - If \(Q=K\) equilibrium
 - If \(Q>K\) the rxn shifts toward the reactant side
Criteria for Spontaneity in a Chemical Reaction

<table>
<thead>
<tr>
<th>Spontaneous Processes</th>
<th>Equilibrium Processes</th>
<th>Non-spontaneous Processes</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta S_{univ} > 0$</td>
<td>$\Delta S_{univ} = 0$</td>
<td>$\Delta S_{univ} < 0$</td>
<td>All conditions</td>
</tr>
<tr>
<td>$\Delta G_f < 0$</td>
<td>$\Delta G_f = 0$</td>
<td>$\Delta G_f > 0$</td>
<td>Constant P and T</td>
</tr>
<tr>
<td>$Q < K$</td>
<td>$Q = K$</td>
<td>$Q > K$</td>
<td>Constant P and T</td>
</tr>
</tbody>
</table>
Example 11-9

• The ΔG°_r for the following reaction at 298.15K was obtained in example 11-7. Now, calculate the equilibrium constant for this reaction at 25°C.

$$3\text{NO(g)} \rightarrow \text{N}_2\text{O(g)} + \text{NO}_2\text{(g)}$$

• Strategy

Use - $\Delta G^\circ = RT \ln K$

$\Delta G^\circ = -104.18$ kJ from example 11-7
Example 11-9

3NO(g) → N₂O(g) + NO₂(g)

• Solution

Use

- ΔG° = RT ln K

Rearrange

ln K = \frac{-\Delta G°}{RT}

Use ΔG_r° = - 104.18 kJ from Ex. 11-7
The Temperature Dependence of Equilibrium Constants

• Where does this come from?
• Recall $\Delta G = \Delta H - T \cdot \Delta S$
• Divide by RT, then multiply by -1

$$\frac{\Delta G^\circ}{RT} = \frac{\Delta H^\circ}{RT} - \frac{\Delta S^\circ}{R}$$
• Notice that this is $y = mx + b$ the equation for a straight line

• $\ln K$ vs. $1/T$
• If we have two different Temperatures and K’s (equilibrium constants)

• Now given ΔH and T at one temperature, we can calculate K at another temperature, assuming that ΔH and ΔS are constant over the temperature range.
Exercise 11-11

• The reaction

$$2 \text{Al}_3\text{Cl}_9 (g) \rightarrow 3 \text{Al}_2\text{Cl}_6 (g)$$

Has an equilibrium constant of 8.8×10^3 at 443K and a $\Delta H_r^\circ = 39.8$ kJmol$^{-1}$ at 443K. Estimate the equilibrium constant at a temperature of 600K.

$$\ln \frac{K_2}{K_1} = \frac{\Delta H^\circ}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right) \text{ van't Hoff Eq.}$$

$$\ln \frac{K_{600}}{K_{443}} = \frac{39,800 \text{ Jmol}^{-1}}{8.315 \text{JK}^{-1}\text{mol}^{-1}} \left(\frac{1}{443\text{K}} - \frac{1}{600\text{K}} \right)$$

$$\ln\left(\frac{K_{600}}{8.8 \times 10^3}\right) = 2.827$$

$$\frac{K_{600}}{8.8 \times 10^3} = e^{2.827} = 16$$

$$K_{600} = 1.5 \times 10^5$$
The Variation of Vapor Pressure with Temperature

- Used for equilibrium between pure liquids and their vapors.
- P_2 and $P_1 =$ vapor pressure at different temperatures
- At the boiling point of a substance at 1 atm this simplifies to
• Natural processes are favored which result in
 – Decreased Energy (favored)
 – Increased Entropy (favored)

• **Entropy** is a quantitative measure of the number of microstates available to the molecules in a system

• **Entropy** is the degree of randomness or disorder in a system

• The **Entropy** of all substances is positive

 E.g., \(\Delta S = S_I - S_s > 0 \)
Chapter 11 Summary

- Natural processes are favored which result in
 - Decreased Energy (favored)
 - Increased Entropy (favored)

- **Entropy** is a quantitative measure of the number of microstates available to the molecules in a system
- **Entropy** is the degree of randomness or disorder in a system
- The **Entropy** of all substances is positive
 \[\Delta S = S_f - S_s > 0 \]
Entropies of Reaction

- \(\Delta S_r^° = S°_{\text{products}} - S°_{\text{reactants}} \)

- For a general reaction
 \[a \ A + b \ B \rightarrow c \ C + d \ D \]
 \[\Delta S° = c\Delta S° (C) + d\Delta S° (D) - a\Delta S° (A) - b\Delta S° (B) \]

\[\Delta S_{\text{univ}} > 0 \quad \text{Spontaneous} \]

\[\Delta S_{\text{univ}} = 0 \quad \text{Equilibrium} \]

\[\Delta S_{\text{univ}} < 0 \quad \text{Non-spontaneous} \]
\[\Delta G = \Delta H - T \cdot \Delta S \]

- \(\Delta G^\circ_f \) is the standard molar Gibbs function of formation

- Because \(G \) is a State Property, for a general reaction
 \[a \text{ A} + b \text{ B} \rightarrow c \text{ C} + d \text{ D} \]
 \[\Delta G^\circ_f = c \Delta G^\circ_f (C) + d \Delta G^\circ_f (D) - a \Delta G^\circ_f (A) - b \Delta G^\circ_f (B) \]

For a change at constant temperature and pressure

- \(\Delta G_{\text{sys}} < 0 \) Spontaneous
- \(\Delta G_{\text{sys}} = 0 \) Equilibrium
- \(\Delta G_{\text{sys}} > 0 \) Non-spontaneous, but the reverse is spontaneous
\[aA + bB \rightleftharpoons cD + dD \]

\[\Delta G = \Delta G^\circ + RT \ln Q \]

Where \(Q \) is the reaction quotient

\[\ln K = \frac{-\Delta G^\circ}{RT} \]

\[\ln K = \frac{-\Delta G^\circ}{RT} = \frac{-\Delta H^\circ}{RT} + \frac{\Delta S^\circ}{R} \]

\[\ln \frac{K_2}{K_1} = \frac{\Delta H^\circ}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right) \]

van't Hoff Equation

\[\ln \frac{K_2}{K_1} = \ln \frac{P_2}{P_1} = \frac{\Delta H_{\text{vap}}^\circ}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right) \]

Clausius - Clapeyron Equation
Chapter 11
Spontaneous Change and Equilibrium

• Examples / Exercises
 11-2, 11-3, 11-4, 11-5, 11-6
 11-7, 11-8, 11-9, 11-10, 11-11, 11-12

• Problems
 13, 15, 23, 29, 31, 37, 39, 43, 49, 53, 57, 63, 69