Chapter 11
Spontaneous Change and Equilibrium

• 11-1 Enthalpy and Spontaneous Change
• 11-2 Entropy
• 11-3 Absolute Entropies and Chemical Reactions
• 11-4 The Second Law of Thermodynamics
• 11-5 The Gibbs Function
• 11-6 The Gibbs Function and Chemical Reactions
• 11-7 The Gibbs Function and the Equilibrium Constant
• 11-8 The Temperature Dependence of Equilibrium Constants
• This entire Chapter deals with a concept called Entropy and the Gibbs function
• Both are new “state properties”
• Entropy = S which has the units $\text{JK}^{-1}\text{mol}^{-1}$
• Consider Energy, it is perhaps obvious that processes occur spontaneously to produce a state of lower energy

• But, a chunk of ice at Room Temperature, spontaneously melts, forming a state of higher Energy

• Apparently more than energy is involved in determining the direction of spontaneous change
• This additional factor is the tendency of a system to assume the most random molecular arrangement possible

• Systems become disordered, more random

• Natural processes are favored which result in
 – Decreased Energy (favored)
 – Increased Entropy (favored)

• These two factors can oppose each other. Which one wins out?
• Recall from Chapter 10 lecture notes
• **Third Law of Thermodynamics**
 \[\Delta S = 0 \text{ at } 0^\circ \text{K} \]
• At absolute zero the Entropy term contributes nothing to the direction of spontaneous change
• The most stable state has the lowest energy
• A temperature increases, molecular motion increases and the tendency to disorder becomes more important
• At sufficiently high temperatures the Entropy factor becomes large enough to overcome even an unfavorable energy change
For $\text{H}_2\text{O\ (s)} \rightarrow \text{H}_2\text{O\ (l)}$

- Above T_m, the Entropy is dominant so spontaneous melting takes place
- Below T_m, the energy decrease is dominant so spontaneous freezing takes place
- Temperature is a critical factor
Disorder and Entropy

- **Entropy** is a quantitative measure of the number of microstates available to the molecules in a system.
- **Entropy** is the degree of randomness or disorder in a system.

•

•

•
• For phase transitions, at temperature T under *equilibrium conditions*
 – Melting (solid to liquid)
 – Fusion (liquid to solid)
 – Vaporization (liquid to gas)
 – Condensation (gas to liquid)

• Define S° as the absolute molar Entropy, which is the absolute entropy of 1 mol of a substance in standard state

• Appendix D gives standard molar entropy values, S° in units JK$^{-1}$mol$^{-1}$
Entropies of Reaction

- $\Delta S_r^\circ = S^\circ_{\text{products}} - S^\circ_{\text{reactants}}$
- ΔS_r° is the sum of products minus the sum of the reactants
- For a general reaction

 $a \, A + b \, B \rightarrow c \, C + d \, D$

- Appendix D gives standard molar entropy values, S° in units JK$^{-1}$mol$^{-1}$
Exercise 11-3

(a) Use Data from Appendix D to calculate ΔS_r° at 298.15 K for the reaction

$$2\text{H}_2\text{S}(g) + 3\text{O}_2(g) \rightarrow 2\text{SO}_2(g) + 2\text{H}_2\text{O}(g)$$

(b) Calculate ΔS° of the system when 26.71 g of $\text{H}_2\text{S}(g)$ reacts with excess $\text{O}_2(g)$ to give $\text{SO}_2(g)$ and $\text{H}_2\text{O}(g)$ and no other products at 298.15K
Exercise 11-3

(a) Use Data from Appendix D to calculate ΔS°_r at 298.15 K for the reaction

$$2\text{H}_2\text{S}(g) + 3\text{O}_2(g) \rightarrow 2\text{SO}_2(g) + 2\text{H}_2\text{O}(g)$$

Solution

Notice that this is minus, which is consistent with 5 to 4 decrease in the amount of gas
Exercise 11-3

2H₂S(g) + 3O₂(g) → 2SO₂(g) + 2H₂O(g)

(b) Calculate ΔS° of the system when 26.71 g of H₂S(g) reacts with excess O₂(g) to give SO₂(g) and H₂O(g) and no other products at 298.15K

$\Delta S^\circ = 26.71 \text{g H}_2\text{S} \cdot \frac{1 \text{ mol H}_2\text{S}}{34 \text{ g H}_2\text{S}} \cdot \frac{1 \text{ mol reaction}}{2 \text{ mol H}_2\text{S}} \cdot (-152.8 \text{ J K}^{-1})$

$\Delta S^\circ = -60.0 \text{ J K}^{-1}$
Chapter 11
Spontaneous Change and Equilibrium

• Second Law of Thermodynamics
 In a real spontaneous process the Entropy of the universe (meaning the system plus its surroundings) must increase.

 • if $\Delta S_{\text{universe}} = 0$, then everything is in equilibrium
 • The 2nd Law of Thermodynamics profoundly affects how we look at nature and processes
Summarize a few Concepts

• 1st Law of Thermodynamics
 – In any process, the total energy of the universe remains unchanged: energy is conserved
 – A process and its reverse are equally allowed
 \[E_{\text{forward}} = - E_{\text{reverse}} \]
 (conservation of energy)

• 2nd Law of Thermodynamics
 – S, the entropy of a universe, increases in only one of the two directions of a reaction
 – Processes that decrease ΔS are impossible. Or improbable beyond conception
Gibbs Function

- How are Enthalpy and Entropy related?

- G has several names
 1. Gibbs function
 2. Gibbs free energy
 3. Free Enthalpy

- For the *change* in the Gibbs Energy of system, at constant Temperature and Pressure
From Earlier

\[\Delta S_{\text{univ}} > 0 \quad \text{Spontaneous} \]

\[\Delta S_{\text{univ}} = 0 \quad \text{Equilibrium} \]

\[\Delta S_{\text{univ}} < 0 \quad \text{Non-spontaneous} \]
Typical example using Gibbs Free energy

- Benzene, C₆H₆, boils at 80.1°C. \(\Delta H_{\text{vap}} = 30.8 \text{ kJ} \)
 - a) Calculate \(\Delta S_{\text{vap}} \) for 1 mole of benzene
 - B) at 60°C and pressure = 1 atm does benzene boil?
Typical example using Gibbs Free energy

- Benzene, C₆H₆, boils at 80.1°C.
 \[\Delta H_{vap} = 30.8 \text{ kJ} \]
 - a) Calculate \(\Delta S_{vap} \) for 1 mole of benzene

\[
\Delta S_{vap} = \frac{\Delta H_{vap}}{T_b} = \frac{30.8 \times 10^3 \text{ J}}{(273.15 + 80.1)} = +87.2 \text{ JK}^{-1}
\]

- B) at 60°C and pressure = 1 atm does benzene boil?

\[
\Delta G_{vap} = \Delta H_{vap} - T\Delta S_{vap}
\]

\[
\Delta G_{vap} = 30,800 \text{ J} - (273 \text{ K} + 60 \text{ °C})(87.2 \text{ JK}^{-1})
\]

\[\Delta G_{vap} = +1749 \text{ J or } +1.7 \text{ kJ} \]

\(\Delta G_{vap} \) is positive,

\[\therefore \text{ benzene does not boil at 60°C and 1 atm.} \]
The Gibbs Function and Chemical Reactions

\[\Delta G = \Delta H - T \cdot \Delta S \]

- \(\Delta G_f^\circ \) is the standard molar Gibbs function of formation
- Because \(G \) is a State Property, for a general reaction

\[a \text{ A} + b \text{ B} \rightarrow c \text{ C} + d \text{ D} \]
Example 11-7

• Calculate ΔG° for the following reaction at 298.15K. Use Appendix D for additional information needed.

$$3\text{NO(g)} \rightarrow \text{N}_2\text{O(g)} + \text{NO}_2\text{(g)}$$
Effects of Temperature on ΔG°

For temperatures other than 298K or 25C

$$\Delta G = \Delta H - T \cdot \Delta S$$

• Typically ΔH and ΔS are *almost* constant over a broad range

3NO(g) → N$_2$O(g) + NO$_2$(g)

• For above reaction, as Temperature increases ΔG becomes more positive, i.e., less negative.
For temperatures other than 298K or 25C

$$\Delta G = \Delta H - T \cdot \Delta S$$
For temperatures other than 298K or 25C
\[\Delta G = \Delta H - T \cdot \Delta S \]
For temperatures other than 298K or 25C

$$\Delta G = \Delta H - T \cdot \Delta S$$

Case A

Case B

Case C

Case D
The Gibbs Function and the Equilibrium Constant

- What about non-standard states, other than 1 atm or a conc. \([X] = 1 \text{ mol/L}\)?

\[
aA + bB \rightarrow cD + dD
\]

\[
Q = \left(\frac{P_c P_d}{P_A P_B} \right)_{\text{any conditions}}
\]

\[
K = \left(\frac{P_c P_d}{P_A P_B} \right)_{\text{equilibrium}}
\]

3/10/2004
OFP Chapter 11
The Reaction Quotient

The reaction quotient, \(Q \), uses prevailing partial pressures, not necessarily at equilibrium.

The equilibrium constant, \(K \), uses equilibrium partial pressures.

The reaction:

\[aA + bB \xrightarrow{\text{forward}} cC + dD \]

\[\frac{(P_C)^c (P_D)^d}{(P_A)^a (P_B)^b} = K \]

\[\frac{(P_C)^c (P_D)^d}{(P_A)^a (P_B)^b} = Q \]

\[Q = K \]
$$\Delta G = \Delta G^\circ + RT \ln Q$$

Where Q is the reaction quotient

$$a \text{ A} + b \text{ B} \leftrightarrow c \text{ C} + d \text{ D}$$

• If

 – The amount of products are too high relative to the amounts of reactants present, and the reaction shifts in reverse (to the left) to achieve equilibrium

• If Q = K equilibrium

• If

 – The amounts of reactants are too high relative to the amounts of products present, and the reaction proceeds in the forward direction (to the right) toward equilibrium

$$Q = \left(\frac{P_c^c P_D^d}{P_A^a P_B^b}\right)_{\text{any conditions}}$$

```
K = \left(\frac{P_c^c P_D^d}{P_A^a P_B^b}\right)_{\text{equilibrium}}
```
ΔG = ΔG° + RT ln Q

- Where Q is the reaction quotient

\[a \ A + b \ B \leftrightarrow c \ C + d \ D \]

- If Q<K the rxn shifts towards the product side
- If Q=K equilibrium
- If Q>K the rxn shifts toward the reactant side

At Equilibrium conditions

NOTE: we can now calculate equilibrium constants (K) for reactions from standard ΔGₖ functions of formation
Criteria for Spontaneity in a Chemical Reaction

<table>
<thead>
<tr>
<th>Spontaneous Processes</th>
<th>Equilibrium Processes</th>
<th>Non-spontaneous Processes</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta S_{\text{univ}} > 0$</td>
<td>$\Delta S_{\text{univ}} = 0$</td>
<td>$\Delta S_{\text{univ}} < 0$</td>
<td>All conditions</td>
</tr>
<tr>
<td>$\Delta G_f < 0$</td>
<td>$\Delta G_f = 0$</td>
<td>$\Delta G_f > 0$</td>
<td>Constant P and T</td>
</tr>
<tr>
<td>$Q < K$</td>
<td>$Q = K$</td>
<td>$Q > K$</td>
<td>Constant P and T</td>
</tr>
</tbody>
</table>
Example 11-9

• The ΔG_r° for the following reaction at 298.15K was obtained in example 11-7. Now, calculate the equilibrium constant for this reaction at 25°C.

$$3\text{NO(g)} \rightarrow \text{N}_2\text{O(g)} + \text{NO}_2\text{(g)}$$

• Strategy

Use - $\Delta G^\circ = RT \ln K$

$\Delta G^\circ = -104.18 \text{ kJ from example 11-7}$
Example 11-9

3NO(g) → N\(_2\)O(g) + NO\(_2\)(g)

• Solution

\[K = \frac{[N_2O]^1[NO_2]^1}{[NO]^3} = 1.8 \times 10^{18} \]

Use

- \(\Delta G^\circ = RT \ln K \)

Rearrange

\[\ln K = \frac{-\Delta G^\circ}{RT} \]

Use \(\Delta G_r^\circ = -104.18 \text{ kJ mol}^{-1} \)

from Ex. 11-7

\[\ln K = \frac{-(104,180 \text{ J mol}^{-1})}{(8.3145 \text{ J K}^{-1} \text{ mol}^{-1})(298.15 \text{ K})} = 42.03 \]

K = antiln 42.03 = e\(^{42.03}\) = 1.8 \times 10^{18}
The Temperature Dependence of Equilibrium Constants

• Where does this come from?
• Recall $\Delta G = \Delta H - T \cdot \Delta S$
• Divide by RT, then multiply by -1

$$\frac{\Delta G^\circ}{RT} = \frac{\Delta H^\circ}{RT} - \frac{\Delta S^\circ}{R}$$
• Notice that this is $y = mx + b$ the equation for a straight line

• A plot of $y = mx + b$ or

• $\ln K$ vs. $1/T$
• If we have two different Temperatures and K’s (equilibrium constants)

$$\ln \frac{K_2}{K_1} = \frac{\Delta H^\circ}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$$

van't Hoff Equation

• Now given ΔH and T at one temperature, we can calculate K at another temperature, assuming that ΔH and ΔS are constant over the temperature range
Exercise 11-11

- The reaction

\[2 \text{Al}_3\text{Cl}_9 (g) \rightarrow 3 \text{Al}_2\text{Cl}_6 (g) \]

Has an equilibrium constant of \(8.8 \times 10^3\) at 443K and a \(\Delta H^\circ_r = 39.8 \text{ kJmol}^{-1}\) at 443K. Estimate the equilibrium constant at a temperature of 600K.

\[
\ln \frac{K_2}{K_1} = \frac{\Delta H^\circ}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right) \text{ van't Hoff Eq.}
\]

\[
\ln \frac{K_{600}}{K_{443}} = \frac{39,800 \text{ Jmol}^{-1}}{8.315 \text{JK}^{-1}\text{mol}^{-1}} \left(\frac{1}{443\text{K}} - \frac{1}{600\text{K}} \right)
\]

\[
\ln\left(\frac{K_{600}}{8.8 \times 10^3}\right) = 2.827
\]

\[
\frac{K_{600}}{8.8 \times 10^3} = e^{2.827} = 16
\]

\[
K_{600} = 1.5 \times 10^5
\]
The Variation of Vapor Pressure with Temperature

\[\ln \frac{K_2}{K_1} = \ln \frac{P_2}{P_1} = \frac{\Delta H_{vap}^\circ}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right) \]

Clausius - Clapeyron Equation

- Used for equilibrium between pure liquids and their vapors.
- \(P_2 \) and \(P_1 \) = vapor pressure at different temperatures
- At the boiling point of a substance at 1 atm this simplifies to

\[\ln \left[\frac{P_{vapor,T}}{1} \right] = \frac{\Delta H_{vap}^\circ}{R} \left(\frac{1}{T_b} - \frac{1}{T_2} \right) \]

at boiling point and 1 atm
• Natural processes are favored which result in
 – Decreased Energy (favored)
 – Increased Entropy (favored)

• **Entropy** is a quantitative measure of the number of microstates available to the molecules in a system

• **Entropy** is the degree of randomness or disorder in a system

• The **Entropy** of all substances is positive
 \[\Delta S = S_1 - S_s > 0 \]
Natural processes are favored which result in

- Decreased Energy (favored)
- Increased Entropy (favored)

Entropy is a quantitative measure of the number of microstates available to the molecules in a system

Entropy is the degree of randomness or disorder in a system

The **Entropy** of all substances is positive

E.g., $\Delta S = S_l - S_s > 0$
Entropies of Reaction

- \(\Delta S_r^° = S°_{\text{products}} - S°_{\text{reactants}} \)
- For a general reaction
 \[a \ A + b \ B \rightarrow c \ C + d \ D \]
 \(\Delta S^° = c\Delta S°(C) + d\Delta S°(D) - a\Delta S°(A) - b\Delta S°(B) \)

<table>
<thead>
<tr>
<th>(\Delta S_{\text{univ}})</th>
<th>Spontaneous</th>
<th>Equilibrium</th>
<th>Non-spontaneous</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>= 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\[\Delta G = \Delta H - T \cdot \Delta S \]

- \(\Delta G_f^\circ \) is the standard molar Gibbs function of formation
- Because \(G \) is a State Property, for a general reaction
 \[a \, A + b \, B \rightarrow c \, C + d \, D \]
 \[\Delta G_f^\circ = c \Delta G_f^\circ (C) + d \Delta G_f^\circ (D) - a \Delta G_f^\circ (A) - b \Delta G_f^\circ (B) \]

For a change at constant temperature and pressure

<table>
<thead>
<tr>
<th>(\Delta G_{\text{sys}})</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(< 0)</td>
<td>Spontaneous</td>
</tr>
<tr>
<td>(= 0)</td>
<td>Equilibrium</td>
</tr>
<tr>
<td>(> 0)</td>
<td>Non-spontaneous, but the reverse is spontaneous</td>
</tr>
</tbody>
</table>
\[\text{aA} + \text{bB} \rightarrow \text{cD} + \text{dD} \]

\[\Delta G = \Delta G^\circ + RT \ln Q \]

Where Q is the reaction quotient

\[\ln K = \frac{-\Delta G^\circ}{RT} \]

\[\ln K = \frac{-\Delta G^\circ}{RT} = \frac{-\Delta H^\circ}{RT} + \frac{\Delta S^\circ}{R} \]

\[\ln \frac{K_2}{K_1} = \frac{\Delta H^\circ}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right) \]

van't Hoff Equation

\[\ln \frac{K_2}{K_1} = \ln \frac{P_2}{P_1} = \frac{\Delta H_{\text{vap}}^\circ}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right) \]

Clausius - Clapeyron Equation
Chapter 11
Spontaneous Change and Equilibrium

• Examples / Exercises
 11-2, 11-3, 11-4, 11-5, 11-6
 11-7, 11-8, 11-9, 11-10, 11-11, 11-12

• Problems
 13, 15, 23, 29, 31, 37, 39, 43, 49, 53, 57, 63, 69